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1 INTRODUCTION

To facilitate the development of increasindarge offshoravindfarm sites, merging techniqueleveraging botldiscrete

geotechnical andontinuousgeophysical data along withHXUDO 1HWZRUNV 11 DOORZ IRU WKH JHQHUDWLRQ RI D 3VI\QWKHWLF"
CPT profile at any locatioacross a large and spatially varied slfe As with allNN based methodologies, the quality of

the outputs isighly dependent on the quality of the training datd§efor instance, all the available CPT profilae in

parts of the site with similar soil propertjesy NN trained using this dataset will be highly unlikely to be able to

accurately generate synthetic CPT profitEsated in parts of the site with significantly different soil properfié®

development of tools for assessment of the quality of trainingssieighly desirable This studyexploresa proof of

concept of utilizing time seriesmilarity technique$2] ZLW K & 37 3G H S W KguantifyutheHsivhilariy \vebveshR

CPT profiles within a dataset

2 METHODOLOGY
The dynamic timevarping(DTW) algorithm[3] has beemised to determine similarity between pairs of CPT profiles. This

DOJRULWKP DOORZV IRU &37 SURILOH 3GHSWK VHULHV® Rl GLITHUHQW OHQJWKV ZLWK SRLQWYV EHLQJ PD
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Figure 1: An illustration of
theDTW procesdor 2 CPT profilesshowing (a) the input series, (b) thermalised alignmertost matrix, and (c) the
optimal match between the series.

Python code was written to calculateaignment cost between every pair of CPT profiles on the Burbo Bank extension
site. Alignment cost can be thought of as the inverse of similarity.

3 RESULTS & DISCUSSIONS

Figure 2 shows heatmspf normalised alignment cost across Bugbo Bank extensiosite when compared to CPT110
(subfigure a) and CPT 307 (subfigure BRT110hasa noticeably lowealignment coswith nearby CPTs in comparison
to those further awayCPT307is less similar with the rest of the site, particularly the northeast.

It should be noted that this heatmap interpolatemmentcost values between CPT locatidosthe purpose of
presenting this data; however, there can be no guarantees of soil behaviour between discrete CPT locations. Similar
techniques could be applied to continuous geophysical data (either separately or in combination with CPT data) to
eliminate this issue

Further work is required regardipge-processingtrategiesi.e., decisions on trimming CPT profiles to the same
length,or realigning prominent features.
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Figure 2: A heatmap comparing treignment cosof CPT110 &) and CPBO7 (b)to the rest of the sitaCPTs in question
in red;other CPT locations marked in black).

4 CONCLUSIONS

The possibility of using time series similarity techniguesh as dynamic time warpinfgr assessment afynthetic CPT
training data quality has been established. Key avenues of future work have been id&htiegthnique, along with the
coordinates at which the CPT profiles are located allows for the identification of areas of the site that are poorly
represented by geotechnical information, and for additional tests to be carried out during the sigaiioresti
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1 INTRODUCTION

Modern geotechnical machinery and equipmeoitks with a large variety ahstrumentation that allows the attainment of
a multitude of drilling parameters such as the drilling speed or the applied t®hgsieollection of data is usually named
MeasuremenrWhile-Drilling (MWD). Intuitively thesedatashould be related to the nature and resistance of the drilled
ground.

However, on many occasiosgchrelationship is not evident when a single paramisteonsideredi.e., torque).
Therefore yvarious authorbavedeveloped compound parameters that combineitigge parameters into energy
expressions oempirical indices seeking tssesshe strength of the ground from the drilling data.

Another approach would be to apply machine learning (ML) techniques to the MWD datkerto directly
predictthe strengthof the soil.

In this study; ML was applied to MWDdata from rigid inclusions to predict the values of bgatynamic
penetrometers. Thus, each perforation would give the same inforraatigmenetrometer. The results obtaimesie
compared with the compound paramstercheck what approackas moreaccurate

2 METHODOLOGY

Theprocess to use the MWD datasthe following:

Obtain the raw data of MWBNd transform then to a useful format.

$VVLIQ SHQHWURPHWHUYTY EORZ YDOXH WR HDFK VDPSOH
Pre-procesdlatabased on prior knowledge of the terrain and the machinery.

Split the data into train and test sets.

Train the model

Evaluate the model using the test set.

Compare with compound parameters.

NouorMwhpE

The algorithns usedwereXGBoost[1] and Random Foresf8] andwereappliedby using scikitlearn[3].
XGBoostwaslimited to 15 treesvhile Random Foreswvaslimited to 100 treesBoth algorithmsvereused with a
maximum depth of 5.

3 RESULTS

Figurel shows the correlation ofhe specific energyand thepredictedblows withRandom Forests and XGboost wikie
blow values of the penetromefer a single jobsite.
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Figure 1: Relation between predicted values and DPSH bl¢a)sSpecific energyws. DPSH blows. (b) Random
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As can be seen, the results from the ML algoritshmsaeda strong and clearly relationships with BBSH
blows. The correlatiowas stronger for ML than for the empirical formulat®on

4 CONCLUSIONS

MWD data can be a useful source of information to verify the soil condition during drilling. Several conmaoanctters
to evaluate the materiatrengthare available in literaturéut these are not directly correlated with common soil metrics
(as areDPSH blows or cone resistance).

ML could be used to obtain equivalent DPBldws from MWD, making every perforation a virtual informative

prospection.
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1 INTRODUCTION

Landslide is aibiquitousnatural hazarand usually hasatastrophic result3o avoid landslide disasters, it is important to
carry out timely prediction of landslide displacemeighis paperthe Xinpu landslide ifChinawas taken as the research
object. Firsthydrological parametei@nd displacement data were mined to discover association Thies, Rarson
correlation coefficien(PCC)was usedo calculate the lag days of landslide displacentéinglly, an artificial intelligent
modelwasproposed for landslide deformatipnedidion.

2 METHODOLOGY

Thegoalof association rule mining is to generate association rules with support and confidence greater than the minimum

support(Smin) and minimum confidenc€Cmin) set by the user respectively, and the(lift of the rule should be greater than

1. Then the main influencing factors of landslide displacement can be determined based on the association rules.
According tathe principle of time series, the cumulative displaceni@gtof landslide can be decomposed into trend

displacemen(D) and periodic displacemerid{), see equation (1)'he trend displacement can be fitted using

trigonometric functions, and the periodic displacement is influenced by periodic factors such as reservoir water level and

rainfall, and can be predicted using intelligent algorithms.

D. D, D, )

BP (Back Propagation) neural network is a feedforward neural network with simple structure and can simulate any
nonlinear mappingThe gradient search technique is used to minimize the mean square error between the actual output
value and the expected output value

3 RESULTS & DISCUSSIONS

In this paper, &NSS monitoring points located in the front, middle asapartof thelandslidestrongdeformationzone
and 4hydrologic factorsncludingmonthly average water lev@lNLnyg), monthly fluctuation of water levéWLys), monthly
cumulative rainfallRn) andmonthly maximum daily rainfalRsm) were chosen to carry out the data mining analfiss
establish and test tHBCGBPNN prediction modelthe GO7 wasselectedas the object

Tah 1 liststheassociation rukeof the Xinpu landslide.The results show that water level decline and heavy rainfall
are closely related to landslide deformati®he effect of rainfall and reservoir water level on landslide displacement varies
at different spatial locations, atige influence level of reservoir water level decreases and rainfall intensity increases from
front part to rear part of the landslide.

The Pearson correlation coefficient method weesduto analyse the correlation betw&#V displacement and
triggering factorsThe results show that the lag days of reservoir water level and rainfall are 30 days and 3 days,
respectively The triangular function was selected to fit the curve andrémal displacememntas shown in Figl(a).Fig.
1(b) shows the extracted trend displacementtaed CGBPNN prediction results compared wiBPNN, from which we
can see PCBPNN fit better As shown in Fig. 1(c), the predicted total displacement showed great consistency with the
measured total displacement

Table 1:Analysis results of association rulgin=5%, Cmin=60%)

o
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Figure 1: Comparisons of (a) cumulative and trend displacement; (b) predicte
periodic displacement; (c) predicted and measured cumulative displadcemen

4 CONCLUSIONS

In thisresearch, a data mining method wasposedand applied t@stimate the causeffect relationship between
hydrological parameters and landslide movemértis. proposed PGBPNN model considering the lag effect showed a
great ability to predict the Xinpu landslide and is thus an effective displacement prediction method for reservoir landslides
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1 INTRODUCTION

Thisextended abstragresers two applications of MchineLearning(ML) for piezoconepenetration tesiGPTY
interpretation and site characterization. These include estimation of soil unit weight and shear wave'Ve)doiy
CPTu data.

Soil unit weightand shear wave velocity araportantsoil parametex A reliable estimate of the unit weight profile is
a key first step towards the accurate evaluation of total and effective overburden stresses of a soAczpasi.
estimate okhear wave velocity ialsonecessary tprovide the fundamental stiffness of the ground in terms of sstraiih
shear modulus (£

2 METHODOLOGY

A compiled database (n = 1228) of paired CPTu readings and laboratory measured unit weights from different field test
sites within a variety of soil types, geological environments, and stress histories was used to explore and develop a ML
algorithm that diectly estimates soil unit weights from CPTu ddfa The Random Fore¢RF) algorithm was employed
to train various ML models using different combinationstafbasicCPTu readingincluding corrected tip resistanceq
dynamic porewater pressure)sleeve friction @, and depth (z)Resultf the RF modek were compared tsome ofthe
existing and widely use@PTbasedelationshipg2, 3].

For theestimation of Vs fronCPTudata 8 RQH7HF TV JHRV S Ba¢mibGP TG WidngDfidid akound the
world was used to compilelarge dataset of paireds-CPTu data (n > 100,0004]. The RF algorithm wasusedto train
ML modelsusing basicCPTu reading$o estimateVs. The impact of soil cementatiavas studied and modelwas
developed for uncemented soils. The resuli®BMmodels were then compared to some of the exisélaionships in the
literature[5, 6].

3 RESULTS & DISCUSSIONS
Results showed thahd&F model trained with g, fs, and z as input features could estimsi# unit weight with an error
of £0.93 kN/ni. When onlyq: and £ were usedRF could predict the unit weight with +1.2eN/m? error. A comparison
performed between tHeF models and some of the existing relationships in literature showed that RFF thedels
developed in this study outperform the existing CPT relationships for estimating unit weight.

Table 2:Performance of different modeis estimateunit weight

ML modes (this study) BiastError(kN/m?) Existingrelationships BiastError(kN/m?)
RF using qgt, u2, fs, and | 0.01+0.93 Robertson & Cabal (2010 0.39+1.57
RF- using qt and fs 0.13+1.27 Mayne (2014) 0.69+1.62

For theVs estimation from CPTu dateesultsshowed that the aioils model developed usilge RFalgorithm can

estimateVs with +49.5 m/s error. The model developed for uncemented soils showed a significant improvement and could

predictVs with +28.2 m/s error. All the develop&F models outperformed the studied existing relationships from

literature.
Table 3:Performance of different modells estimateVs.
BiaszError (m/s) BiastError (m/s)
ML modesk (this study) All Soils Uncemented Existingrelationshifs All Soils Uncemented
RF-AIll Soils -8.5¥49.5 -23.4+34.8 Mayne (2006) 12.0+68.6 -7.2+52.5
RF-Uncemented NA 0.6+28.2 Robertson (2009) 21.5+64.3 -6.1+50.3

4 CONCLUSIONS




With increasing computational power, ML has gained substantial interest within the geotechnical engineering community
and has gradually become an alternative solution for geotechnical prol¥imsnore accurate #situ predictions of soil
properties, geotechnical analysis using the CPTu can be imp\nelg. certain projects may always require various
amounts and types of drilling and sampling, dased models can enhance the accuracy and interpretatiositf@PTu
profiles offering a rapid, coseffective, and repeatable alternatthat carpotentiallyredue the overall schedule and cost

of site investigations.
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1 INTRODUCTION

Today, input parameter estimation for geotechrficite element modellingREM) is in practiceoften basednainly on
expert judgement and thus introduces subjectivity into the process and hampers widespread technologyradojstion.
particularly true fomoreadvancedonstitutive soil modela/hich require an increasing number of ingpgrameters for
calibration.Recent studies however work towasldgomating the process of FEparameter calibratio(e.g.,Machalek et
al. (2022)[1 B)) to alleviate tke abovementiored problems andhcrease objectivity and comprehensibility of the method.
The presenstudypresents preliminary results from an exploratiomaomatic calibration of input parameters for
geotechnical FEM based on machine learning (Nill).hasseen a rapid increasegeoscientificapplications in the past
years with publications in all subfieddsupervised learning (eld]), unsupervised learning (e[8]) or reinforcement
learning (e.g[6]). Therationalebehind usingtsupervised+ML for this application is that Mlalgorithmshave a strong
capability of findingrobust inputoutput relationships art generalizevell within the domain of the training data.

2 METHODOLOGY

The traditional way of parameter calibration for constitutive models in EBbleither conduct irsitu geotechnical tests
(e.g, cone penetration tests (CPD))laboratory experimentg.qg, triaxial teststo estimate the required parameters from
theseinvestigationsin this study the process of determining soil parameters from be#itin and laboratory tests is
replaced with supervised ML algorithrtisat take raviield data and / or laboratory data as an input and based on this
predict the parameters for different constitutive soil mod#lsile training of ML algorithmdor laboratory data is
primarily done with synthetic data, training fiorsitu data is done with field recordingghe overall workflow is shown in
figure 1.As part of this studywe experiment with differer¥IL algorithms ranging from simple ones like support vector
machines andandom forest regressiamtil deep artificial neural networks. To achieve an optimum of predictive
performancethe hyperparameters of the ML models themselvesptimized with the hyperparameter optimization
framework OPTUNA[7].

Figure 1: Overviewof the MLpFEM worKlow

3 RESULTS AND DISCUSSIONS

First results show that the ML algorithrage well capable to learn the relationship between the synthetic laboratory data
and theassociatedoil parametersPerformance wiséhe highest prediction accuracy was achieved with the artificial
neural networks although trdmsedVL methods (e.grandom forests) show almost the same performance while being



faster and easier to traiApplying the models that wertgained on synthetic data to real records of soil mechanical
laboratory tests was also testattl shows that the models are in principle ablotthis although the performancevi®rse
than for the synthetic data. The reason for that is seen in the inheresf therealtests that require heavy data-pre
processing before the ML algorithms can be applied to them.

4 CONCLUSIONS AND OUTLOOK

This study can be seen as a proof of concept that ML algorithms are suited thédeaiationship betweegeotechnical

field / laboratory investigations and the parameters that are necessary to calinavancedonstitutivesoil models.
Room for improvement is seémimproving the variability of the synthetic data so that it is better suited to teateres

and patterns of real soil tests and also in combining laboratory datgeatethnical field data as an input to the ML
algorithms. Nevertheles$é approach shows great potential and will be further explored in currently ongoing research
projects
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1 INTRODUCTION

There are many currently ongoing ambitions to use machine learning (ML) technology for geotechnical applications and
ideally, inexperienced users could learn and develop their algorithms directly basedworlealata. However, the real

world datasetsame with many drawbacks such as the need to record, acquire and organize it. Additionally, geotechnical
datasets are often limited in quantity, exhibit skewed distributions and hence mighifihall requirements for certain
geotechnical tasks. One thfe main driving factors for the rapid development of ML throughout many disciplines has been
the availability of large amounts of open data. In the field of geotechnics however, confidentiality constrains possibilities
for publication of datasetglimiti ng the development and use of tailored ML algorithms.

Synthetically generated datasets, on the contrary can provide relieve in many of the situations restricting the use of real
data. Data synthesis is primarily about generating new, unprecedented data to be used for ML model evaluation and
training

To bypass the problems arising with the use of real data, we propose a generative adversarial netwdi§ t@sed)
approach of generating synthetic geotechnical ddte.demands we put on the synthetic TBM data are of a dualistic
nature as described [8]: on the one hand, the data has to be sufficiently dissimilar to the original data, so that it does not
create confidentiality issues (demand for originality). On the other hand, it has to show the same patterns and follow the
same rules as the originaltdaso that it can be used as if it were real TBM data (demand for conformity).

2 METHODOLOGY

2.2  GAN MODEL

GANs are based on a game theoretic scenario in which two neural networks compete against each other. The generator
network(g) directly produces samples from random noise input variables and calculated parameters (i.e., weights). Its
adversary, the discriminatéd), attempts to distinguish between samgiggaken from the training data and samples from

the generator. The discriminator outputs a probability value given by, indicating iéal (i.e., from the training data)

rather than fake (i.e., gersged data).

As the purpose of this study is not to generate a complete synthetic TBM dataset, rather than showing that it is possible
to use GANSs for the generation of new, unique, synthetic and realistic TBM data, only three features (i.e., specific energy
[/, 17, specific penetration [mm/kN] and torque ratio) have been chosen as the features that our GANs are trained on.
The GAN in this work was trained using the Wasserstein distance algorithm (WBRb§sed on an adapted DCGAH
architecture. The parameterization was set and adjusted in an iterative process to ertkeM/€AN correctly learns
the distribution of the training data and that the generated data are capable of reproducing the real data distiéoution.
training, the models state is saved so that it can be reused whenever the need for generating new data is given.

2.3  EVALUATION

The utility of the synthetic data is evaluated in a simple thager GRU (gated recurrent unit) regressor model with the
task to predict the next observation. This model is first trained and tested on the real datat{fdTReal, test real) and
thentrained on the synthetic data and tested on the real data (E8&R synthetic, test real) as introduced[Bl
Different metrics are calculated and compared between the results of TRTR and TSTR.

The demand for originality was evaluated by using the distance to closest record ffthiede the Euclidean
distance between any synthetic record and its closest corresponding neighbour from the real data is calculated. Most similar
and dissimilar vectors were plotted and visually investigated. Furthermore, to check how well the syrithetic da
reassembles the real data in terms of keeping the relationship between variables and utility of the synthetic data, the
similarity score aftef7] was calculated.

3 RESULTS & DISCUSSION



Results oicomputedvector distances and the similarity scappliedto a randomly chosen set of generated datdto its
most similar and dissimilar counterpart from real data are shown in floamd tablel, respectively. Where one set of
observations contains 1024 datapoints which correlates to about 50 meters of tunnBleduilts for the evaluation of the
synthetic data utility in a ML model using the TRTR/TSTR method are shown in table 2.

Table 4. Table 1. Similarity Score results, for details se7].

T

specific energy

observations

Privacy results:

Duplicate rows between sets (realsynthetic) (0/0)
Similarity Score resullts:

Basic statistics 0.9930
Correlation column correlations 0.8422
Mean correlation between synthetic and real 0.9740
Correlation RMSE 0.8095
Similarity Score 0.9047

Table 5: Table 2. Error measuresof the GRU regressor model

MAE MSLE MAPE (%)
TRTR 0.218 0.034 1.084
TSTR 0.239 0.039 1.034

4 CONCLUSIONS

This work shows that applying a tailored WGAN trained on real observations is able to generate new, synthetic and
realistic TBM operational datéfter evaluation of theyntheticdatawe confirm that botimposeddemands are fulfilled.

The newly produced data shows the same patterns and follows the same rules as the original data and can be used in data
analysis as if it were real TBM data (demand for conformity), but still presents unique samples with no cotméntio

technical content of the origindhta (demand for originality).
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1 INTRODUCTION

The settlement of railway tradied has a direct impact on the tracks, which can leadndisant train accidents.

Therefore, careful management is essential for preventing them. The settlement can be categorized into two types:
immediate settlement and residual settlem&he residual settlement affects the actual operation of trains and increases
gradually with repeated train loads.cases where soft ground is present, thdgrenant factor in determining the

engineering properties is the moisture content of the diy layer. To more accurately simulate the settlement behavior

of the sity clay in the numerical analysis, the Soft Soil Creep model was employed on the original §r@lirid fhis

study, the authors performed numericallgsia to simulate the settlement behavior of the silty &ger caused by

repeatedly train loads, assuming the presence of soft groundanigheal soil. Additionally, the authors usétk residual
settlement data obtained from the numerical analysis as input for machine learning algorithm to derive a residual settlement
prediction model.

2 NUMERICAL ANALYSIS

Table 1 and 2 summarize the variables and properties that were considered during the numerical analysis. In addition,
Figure 1 illustrates the mesh generation of numerical analysis. Assuming the presence &y siltthel orginal ground,

actual consolidation was expected to result in settlement convergence. The results of the residual settlement due to train
loads after the completion of consolidation and traelconstruction are presented in Figure 2. The figure reveals that
residual settlement occexd rapidly and significantly during the early stage of train loading, after which it gradually
decreased and constantly converged. During the analysis giaseithors established the initial conditions by assuming
the presence of weak sadipecifically soft rock and siltglay, in the original groundlhe analysis was then performed

based on these assumptions. The consolidation process of the lower and upjErdsagks complete by performing
consolidation over a period of 180 days, while confirmiigether settlement due to consolidation was converdiftgr
confirming that the settlement had converged, a reinforced-bbedkHSB, TCL, and Rail were appliethe analysis only
consideredhe settlement that occurred after the completion of rail installation. To accomplish this, the consolidation
analysis, reinforced tradied design, and tradkstallation processes were all performed in accordance with proper
procedures.

GroundiSoft Rock)

Figure 3 Mesh generation of numerical analyiggure 4 Residual settlement from numerical analysis



Tablel Summary of cases for numerical analysis

Causeof settlement Inputparameters
Trackbecheight 6m
Thickness 10m/15m/20m
Softgroundliquid limit 20%/ 40%/ 50%
Groundwatetevel GL(-0m)/ GL(-5, -7.5,-10m) / GL(-10, -15,-20m)
Consolidatiortime 18 Month

Table2 Constitutive model and material properties for numerical analy@is [

Poisson’s E c E
Name Model ratio (kPa) | (kPg | (°) [Cc Cs Ca (kN/m®)
Rail LE 02 21066 - - - - - 70
TCL LE 02 34e6 - - - - - 245
HSB LE 0.2 12.9e6 - - - - - 23
Reinforced MC 0.2 120e3 0 40 - - - 20
trackbed
Upper mMC 02 80e3 0 35 - - - 20
trackbed
Lower MC 02 60e3 0 35 - - - 21.56
trackbed
Ground MC 0.22 9.1e3 11,300 53 - - - 26
(Softrock)
Ground 59.8~ 33.4~| 0.09~(0.018~|0.00524+
(sity clay | SSC 02 © | 1128 | 387 | 036 | 0.072| 0.01415| 15

3 PREDICTION MODEL OF RESIDUAL SETTLEMENT

To deduce the predictive model of settlement, the authors used the results from the numerical analysis as input data for
machine learning algorithms such as Linear Regression, Lasso, Ridge, Multi Layered Perceptron, Support Vector Machine,
Random Forest, &Boost and LightGBM. And the performance of the model is estimated by root means square,(RMSE)

the results were presented in Table 2. As per the table, Random Forest, XGBoost and LightGBM algorithms yielded the
best performance. Furthermore, the imporéaotvariables derived from the thralgorithms is summarized in Figure 3.

Table3 RMSEvalue of each algorithm

Algorithms LR L1 L2 MLP SVM RF ‘ XGB LGBM

RMSE 2.32 2.32 2.32 1.19 153 0.7™ ‘ 1.09 0.53

4 VERIFICATION OF PREDICTION MODEL

In this chepter, the authors present a validation of the prediction model derived through Light@B&h demonstrated
superior performance. During the verification process, the authors compareti@éthnkmerical results obtained through
numerical analysis with values derived from the prediction model, by applying data points that fall outsidgel the
input data feature.he verification results are depicted in Figure 4, where thrix represents the residual settlement
derived from the prediive model, and the-gxis represents the residual settlement derived from the nuheeralgsis.
The RMSE obtained in this process was 1.23. Althaligitly higher than the RMSE obtained through traditional
validation, it is not significant enough to be consideredcatilie of overfitting.

5 RESULT AND DISCUSSIONS

This In this study, residual settlement caused by railway loads was derived through numerical analysis, and the residual
settlement of the railway tradied was predicted using machine learning. Various algorithms were tested, and the
algorithm with the highegierformance for predicting the residual settlement of the railway-radkwvas selected. The
treebased algorithms outperformed the other algorithms, with LightGBM providing the most accurate prediction model.
$QDO\VLV RI WK HtahteDrikiepediditien mBdeRévealed that embankment height, groundwater level, liquid
limit, and the thickness of the silty clay had a significant influence on the prediction model. However, consolidation time
and train load did not significantly influence theediction model.
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1 INTRODUCTION

Risk management during the construction of an underground structure (e.g., tunnels) requivesoe knowledge of the
rock mass that will be excavated [1]. In order to predict the geological conditions accurately, the correlation between
variousin-situ data and classes of the rock mass ahead of the tunnel face has to be found. With a large amount of data that
can be obtained from working equipment and technical surveys, this search is often outsourced to machirkedsathing
models. The quality of thieput data is ensured by staithe-art collection methods, while the output datthe labels of
the rock mass class collectagosteriori- LV VXEMHFW WR DQ H[SHUWfV SHUFHSWLRQ DQG WKHUHIRUH FDQ FRQWDLQ HU
sampling errors are a major bottleneck in developing reliable predictive models for geoengineering.
In this work, we demonstrate an approach for detecting and eliminating the subjective perception in geological
FRQGLWLRQVY ODEHOLQJ WKDW LV IXUWKHU XVHG WR LPSURYH DQ DFFXUDF\ RI WKH PRGHO IRU SUHGLF
tunnel face.
The proposed approach is sitelependent and can be generally applied for the detection of incorrect labels in data,
including the labels of rarely observed classes.

2 METHODOLOGY

To spot the observations with misplaced labels, wged a cascade of unsupervised and supervised machine learning
algorithms By recursively clustering the observational data, we forced a motidrtothe underlying patterns in seismic
data and available geological documentatibthe underground construction site. Then we baa&e the observational data
from thesame clusters and mépemwith expertsfassigned labels to identify the outliers.

The methodological reasoning behind the prop@gexioachs as follows in a featurespace the observations (each
denoted by a label, e.g. a rock mass class) are located unevenly, some closer to each other. When the distance between
labels is too small, a machine learning model might fail to differentiate well betweendhelata variance for the
corresponding observation and will motike accuratpredictions fotthelabel(s). On the other side, forcing a model to
predict labels located too close midgéad to an overfitting problem. In order to avoidgé problems, unsupervised
machine learning methods can be employed to assignabssevations to one clustén. suchclusters the distances
between observatiorfand correspondintgbels) will be distributed more evenly when compared to the original dataset.

The nested clusters can be constructed recursively until the distances between various observations in a single cluster are
distributed almost evenly. Then, a supervised madeiam@ing methodan be used to find a correlation between labels and
observations for every cluster, and the outliers can be identified.

3 RESULTS & DISCUSSIONS

With unsupervised machine learning methods, the entire dataset was clustered into an arbitrarily defined number of
clusters. The experiments show that three to seven clusters were enough to resolve the distance between the closely located
observations. Th@ VXSHUYLVHG PDFKLQH OHDUQLQJ PHWKRGV ZHUH XVHG WR SUHGLFW WKH ODEHOV IRU WKH
LQIRUPDWLRQ IURP WKH SUHYLRXV VWHS ZDV DGGHG DV DQ DGGLWLRQDO LQSXW :KHQ WKH SUHGLFWLY
exceeded 90%, wrongly prieted rock mass classes were flagged as (possibly)aiéded and observations related to
these labels were backtraced and further explored.
The approach was validated on data from different sites and results confirm that the proposed method is site
independent and can be generally appligte performance of the supervised predictive model was assessed using
different evaluation techniques, including confusion matrix based (e.g., F1Score), Log Loss, and Receiver Operating
Characteristics (ROC) curve.

4 CONCLUSIONS



A cascade of unsupervised and supervised machine learning algasthsesl to eliminate subjective perceptions in data
labeling and to improve the accuracy of predicting the geological condition ahead of the tunnel face. The latter is achieved
by improving the quality of a training dataset. When spotted, the potentialgbeled observations can be either removed
from the training data or #labeled (manually or automatically). Such an approach also generates additional information

L H FO XV ihatiday be @GE&Esiextra input and help to improve the rock mass prediction by implicitly resolving the
problem of finding a difference between closely located observations.

Another advantage of this approach is the ability to analyze a large amount of data and provide an accurate, objective
interpretation in (near)redime.
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1 INTRODUCTION

During tunnel excavatin the rock mass ahead of the tunnel is often drilled for exploratory or intervention pyusuaes
asgrout injections or dewatering. Most drilling equipment resagerational parameters via a data acquisition system
monitoring while drilling (MWD) presenting the opportunitglate the drilling performance to the rock mass
characteristics. This has been used to interpret the rock mass ahead of the tunnel face for decision making regarding
excavation, support and grouting [e.g. 1, 2, 3, 4]. The large quantity ofénmes andpatial datdends itself well to
interpretation via machine learning methods.

One of the keghallenges to applying machine learning to these datagett MWD and groutingdata are not
collected specifically for machine learning, and in order to derive meaningful interpretations information from a variety of
data sources must Ipeanuallyrelated to each other in terms of time and/or space.

2 DATATYPES AND PRE-PROCESSINGMETHODOLOGY

The MWD data themselves consisttirhe series of machine parameters, for example rate of penetration (ROP), feed
damperandrotation pressuréFig. 1,top), organised into separate data files for each drilled hole. These first need to be
filtered to remove nomock mass associated noise to highlight changes in the parameters in response to rock mass changes
(Fig. 1,bottom). A second key step is locating the boreholes in time and space. This required developing scripts that related
time stamp and hole dal survey data to develop a chronological model of when each hole is drilled with respect to the
other holes (Fig. 2finally, the MWD datare manuallyelated to grouting data by assigning the MWD data file to a

grouting data file.

3 DISCUSSION AND CONCLUSIONS

In order to reduce the amountmfnualpre-processing needed to apply machine learning techniques to MWD and
injection data, the time and location of the boreholes must be included in the metadata. A data structure for MWD and
injection data should be constructed before the project startuoeethsit borehole numbers are systematically assigned
regardless oéquipmento they can be automatically related to each other.

rod

— end
change of
hole
collaring
i /
events?
Figure 2: Example time series of MWD data showiieft) raw signal with operatiorelated noise and (right)

filtered signal showing rock masslated events.



Figure 3: Screenshots of videbased chronological models of borehole locations
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1 INTRODUCTION
The crosshole ground penetrating radar (GPR) Electromagnetievave-basedmethodto detect electrical properties of
subsurface materials, which has been successfully emplogediinsiveengineeringapplications However, the
interpretation of crosshole GPR is a complicated and challenging task due to the highly nonlinear mapping relationship
between crosshole GRRataandsubsurfacelectrical propertiefl].

In this paper, we proposeganerative adversarial network (GA[R)] based3D crosshole GPR inversiaretwork
referring as CGPR2Voxp reconstruct subsurface structdefectsfrom crosshole GPR images. We first introduce the
designof the CGPR2Vox, then illustrate theatapreparatiorand networkraining Finally, a novelvisible model
experiment is designed collectmeasuremendata for verifying the generalizati@bility of CGPR2Vox.

2 METHODOLOGY

Figure 1 shows the architecturetbé CGPR2Vox framework, which includes a generator to inverse the input crosshole
GPR data into permittivity voxeJand a discriminator to improve the performance of generator by discriminating fake
samples.

Gbal encoder 20 decoder

por

e

Reanet

Orscrminator

Figure 4: Structure of the€GPR2Vox network

3 DATASET

We use finitedifference timedomain (FDTD) method to create 116¢hthetic3D diagram wall models, and then obtain
thecorresponding crosshole GPR data and voxel models by simulating electromagnetic wave propagation and voxelization,
respectively. Finally, the training and testing datasets are formed by combining crosshole GPR and voxel data from the
same electrical modginto data pairs.

4 RESULTS

We use training dataset to train the proposed CGPR2Vox for 500 epochs. And then the testing on test dataset shows that
the proposed framework achies@2.05% precision, 96.43% recall and 94.19%sEare, respectivelyn the meanwhile,

we build an automatic andisible experimensystem and gather 364&an timedomain waveform images. Theve feed

the experimentatiata to CGPR2Vox which is traineéy theFDTD datasetThe CGPR2Vox revealthe 3D spatial position
relationship between stiiox and defect with position error of 1.05cm.

5 CONCLUSIONS



CGPR2Vox is a 3D GANbased inversion framework that can automatically reconstruct subsurface structure from
crosshole GPR data. It achieves high accuracy and robustness on both syntheticvamididrealtasets, and can effectively
reconstruct subsurfaceficts.
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1 INTRODUCTION

Like the comparison of the round time in Formuleat racing metrics show which machine learning algorithestfits
thedata predictiomequirements. The question is, are all metsigisablefor every algorithm and data set in geoteckhic
One problem for data sets in geotechmscthat there are often only sparse and imbalantedther problem is the
subjectivityof choosing the input parametdos machine learning algorithsrand metrics. Most of them have no clear
decision rule and depend on the experience of the superliigsresearclyives a first recommendatiaf the stability of
differentmetricsfor regression and classifidah predicbrsfor a wide variety ofjeotechnical data sets.

2 METHODOLOGY

Training and performance measurements of different algositimvariousdata setsre used tehow the stability of the
metricsto eliminate the problem of subjectivity of parametrizatiBar this reasorg large number dfifferent data sstare
needed. Geotechnical data for machine learning aranavoften sparseoto eliminate subjectivitthe solution was to

split everydata set randomly o training and predictiosubsetsnd repeat thiprocedure800 times per data sén this

way the normalized standard deviation carchiulatedand the stability of the metrizan be estimatedine published
data sets for regression aselvenfor classificationtasksare used. For calculating thermalizedstandard deviatiorthe
resulting distribution of the 300 times training cycle of every algorithm and metric is fitted by the probability distributio
whichis included in the SciPy package in Pyth The pvalue of the Kolmogorossmirnov test was the criten for

deciding, which probability distributioshowing the beditt to the resulting distribution. To make the metrics comparable,
one probability distribution is used for every algorithm oveapppliedmetrics.The stability of a metric is rated by
KolmogorovSmirnovp-value > 0.05 and normalized standard deviation < 0.5

3 RESULTS & DISCUSSIONS

Most regression metrics show a stable behaviour. The maximum error (mer) is over all algorithms unstaiée. The
results showor 5-8 cases pvalue < 0.05For classification, thé&da Boost Classifier and the MitLayer Perceptron
Classifier show medium to low stabilifgr all metrics The rest of the metrics of the classifisi®wstable behaviour.
Error! Reference source not found.summarize the recommendatiarfor the classifier based on thevplue and the
normalized standard deviation. The recommendafionthe regressorarenot shown in this abstract.

Table4: Recommendation for classification algorithms (vertical) and metrics (horizontal).
+ (useable for all data sets), ~ (depends on data-gat)t useable for all data sets).

Zero-
f1- fb- Hamming | Jaccard | Log Recall- | one
Acauracy | score | score loss index loss | Predsion | score | loss
Random Forest + + + ~ + + + + ~
K-NearestNeighbour + + + + + + + + +
Support Vector
Machine + + + + + + + + +




Decision Tree + + + + + + + + +
Gaussian Nearest
Neighbour + + + + + + + + +
Linear Discriminant
Analysis + + + + + + + + +
AdaBoost - + ~ ~ ~ - - R ~
Quadratic
Discriminant + + + + + + + + +
Multi-Layer
Perceptron - ~ ~ - ~ ~ - - —
Linear Regression + + + + + + + + ~

4 CONCLUSIONS

Theused methodology shows, in a limited way, how stdifferentmetrics are, addicted to the algorith&
recommendation for a small set of algorithamd metricss possible To validate these results, more data sets are needed.
The best case would be, that the 300 times repeated training and perfomeasceementycle can be substituted ey
sufficiently large number different data sets. Python provides more machine learning algorithms and mbtcichave

not been examinedf enough computational powerasailable this recommendation can be done for all implemented
algorithms and metrics in Python/Sciléarnpackage

All resultsand used datdttps://github.com/rmttugraz/MatthiasHann.git
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1 INTRODUCTION

Urban development urges the use of tunnelifngch can induce surface settlements. If acturately estimatedround
movements can causeamageo the existing structureRecently, Soft Computing techniquieased on Machine Learning
(ML) methodshave been used to predict these settlenfér2s However, these innovative methods are onlgasd as

the data they learn from. In tseope of the Grand Paris Express, which is the largest underground transport project in
Europe, we have access to a big amouisetifementiataas well as excavatioand soil parameter$his papediscusses
the resultof the prediction of settlement at any distance from the tunnel axis sming ML algorithms, namely ensemble
methods like XGBoost and Random Forest Regre3s$mr choice of these methods is based on recent s{@digshat
prove that these algorithms are capable of better performance thaidéhe usedArtificial Neural Networks(ANN).

2 METHODOLOGY

Our goal is to predict the surface settlement inducetiinyellingat any distanc&om the tunnel axisThereby, the
VHWWOHPHQW LV WKHKHR XWQSXW ™ SHDUWDIP BWH UV KH S D U D setdéthentiiey&nDW KDYH DQ LPSDFW RQ WKH
be classifiednto 3 partstunnel geometry, shield operation and geological condifiths
The first step is the extraction and the cleansing of data. The collected data coséspoaexcavation of 13 km of
metro tunnels using an Earth Pressure Balance (EPB) Tunnel Boring Machine farBM8 project othe Grand Paris
Express (GPE)A relational databasgasthencreated to gather all the information in one place while keeping thealata
[8].
After the data treatment, the input parameseesselecteccover depth and distance to tunnel axis for the tunnel
geometry, advance rate, torque of tlting wheel, front pressure, thrust, and pressure and valtigreut filling for the
shield operation, and finallyoil density, pressuremeterodulusandsoil rheologicakoefficientalpha,earth pressure
coefficient,soil cohesion, soil friction anglfor geological conditionNote thatsoil layers] S D U D @édthickrigas,
location with respect to the tunnel and mechanical propeeresombinedusingthe method described by Chen et{d].
Thedataset ofi406valuesis then dividednto training(70%) and testind30%) dataset Trainingphasdncludes
hyperparameters tuning usi@ndom SearcfScikitLearn library Pythor) combined to crossalidation with 5 folds
2QFH WKH PRGHO VDB HRBESNDUWPD R/HHWEH WAK H P R G With fhe t&sting d&tdsér.OrigeddelNs WHV W H G
evaluated using 2 error metrics, namdly 5 ' (Root Mean Square Error) ardf (coefficient of determination)f the
4/5"is close to 0 and thé® close to 1, the model is considemsperformant.

3 RESULTS & DISCUSSIONS

Based on the resultEigure 3, both modes havesimilar performanceThe RMSE is of B3 and 0.84nd the4®is equal
to 0.83and0.82for XGBoost and RFor the testing datasdtnfortunately some settlements are underprediatétich is
of higher risk than overpredictidor settlementAn error metric thapenalzes the model in case of underpredictisimould
beconsidered3].
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4 CONCLUSIONS

In this paper, two ensemble methods are tested for the prediction of surface setiteangrdistance from the tunnel axis

namely Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algoBasei on4 / 5' and 48 error metrics

both methods showed great resuisror metric that penalizes underprediction should be added*RE URYH WKH PRGHOVY
predictions.n this studythe interpolation performance ehsemble methodsas testedTo conclude on theitapacity of
extrapolationthe modelwill be testedn new data from differergxcavation zones.
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1 INTRODUCTION

Geotechnical constitutive models are often a mix of etiwn physics and empirical relations that can be improved
gradually for specific cases or with increased insight and feedback data. The Bayesian framework is very powerful to
calibrate the empiricaklationsby updating our belief, given past and current experie@ce successful approach is
Markov Chain Monte Carl{MCMC) sampling to update model parameters to fit data to mdd¢ls his method is
extensively used in geotechnical applicatid@s 3].

MCMC is used to update the probability distributiortltd model parameteggven new information. Thanks to the
Bayesian framework, measurement uncertafotiput variablesind model uncertainty can be considered explicitly
Often the variance on the input can be ignored, for instancenigasurementareconsidered accurate without a need to
consider variancerhile CPT measurements as inpoight have considerable (spatial) varianicethat case, the calibration
approach needs to account for theseeuiainties. A simple strategy to account for the uncertainties correctly within a
Bayesian framework is proposed in this paper.

2 METHODOLOGY
The likelihood of datalygiven an inputTgand modelBwith parametersais given as:

X -T2 P
LT L IsvgteGypAT EF%G @
V)

With the variance@; L &% E Fwhich accounts for the varianoéthe data,&%;and the residual variand€ which
represents unexplained prediction uncertainty originating frormtbeel. If the measured inptfhas a significant
variance, we want to account for that by using a likelihood function considering the true cooliinatdyal= <=,

For a multiple linear regression model, this likelihood is worked olfit,id]. This becomes significantly more difficult
if the inputvariance is geospatially correlated and the model is highlylinearand coupledas is often the case in soil
mechanics. For instance, the input could be soil properties generated from a random field, conditioned by a nearby CPT, to
predict the pile resistance over defj8],

A more generic approach is proposed to handle the variq%g,g; originating from the uncertaintyn the inputinput
Tis assumed to be normally distributed around the real valtiasd standard deviatiofs. Using the modeB: T&;, the
variance8$q4 . can be calculated from a sampled distributioriTohich is then used in the likelihood (eg. Exhe
relation betweenTand Us linear, the problem can be solved without iterati@isen a highly nodinear relatiorhowever
this needs to be calculatedth every sample of the likelihood functiofn iterative approach is needed as the variance of
predictions due to the uncertainty of input will depend on the model parangeiéasiance of the input might have a
negligible effect on the final prediction of one model, and a very large effect for another set of pardmetersulting
varianceéﬁeél s thenadded:§; L % EF E éﬁéa - The total variance@is used in MCMC sampling using eq. 1.

3 RESULTS & DISCUSSIONS

The proposed approach is generic and can be used with any Biddal, where Tcan be a vector of inputs. To illustrate
the solution and the importance of handling input uncertainty, a simple quadratic model is used with 11 data points of
varying varianceé$. The result is shown in Figure 1. A large variation in the uncertainffi@foreseen. This could
represent an uncertainty on the measured cone resistgnese( to predict an undrained shear strengthf@r instance

due to a larger distance between the two measurements.



In Figure 1, a fit is shown that considers only uncertainty in the dependent vaddite 1(a)) and uncertainty on
both dimensions (Fig. 1(h))f the uncertainty of the input is not considered, the model fit becomes less predictable and
gives too much importance to less reliable measurements. This also results in a larger posterior predictive distribution and
moreuncertainty on the real correlation. By considering all uncertajrdiesore reliable fitan be achieveith a narrow
posterior predictie distribution.
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FIGURE 5: Bayesian parameter updating without and with consideratia® of



4 CONCLUSIONS

Uncertainties of the model input can play a significale i the calibraon of soil mechanical model$he uncertainties
can be considered well within a probabilistic framework, but often focus on the uncertainty of the dependent variables. In
case of complex, nelinear predictions, the uncertainty in the inplgo might have a large impam the final fit of the
model.An approach is proposed to calibrate a model probabilistically using MCMC with consideration of a (variable)
variance of the inputés.

This approach is especially relevant when linking field measurenfenisgtancecone penetration tests) to
predictions of the soil response, such as drivability of piles.
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1 INTRODUCTION

Recentdevelopmentin deep learningnd computer visiohavecontributed tesubstantial advances in madigciplines In
the geosciencetere isgreat interest itransferringthe successsof deep learningichieved in computer vision to remote
sensingapplicationsbut applications to seabed mapping are nascent in compéwisemestrial remote sensing

Machine learning methods have been popularly employed in seabed msioglieg [1]. Howeverraditional machine
learning workflows involve a manuahd subjectiverocess of engineering asdlectingappropriateepresentationsf the
rawdata pHQJL QHH U Hdbel ks&\espkHiatdfs in the chosen machine learning model@)vantage of deep
learningmethods is the automati@md objectivityof the feature engineering procg8k wherethe neural networks
extract useful properties of the data vieoanbination of assigning weights to variablesrplinearactivations, and a
process ofyradient descenbptimization of thewveights.In addition,this capabilityof learning features opens the
possibility for deep neural networks gteaninformation thatmay bepresent in thelata buthas notyetbeen derived
manually.

This study presents@mparison ofhe performance of classifietr®ined usingonventionakngineered featuregs
that of classifiers trained using features automatidaynedby a deemeural network p O HD U Q H GWiettalamatd) H V
several of the most common terrain attributes found in the literature athitheseto predict the distribution of seabed
sediment properties observed from discrete point samples. Resuitsompared with models trained tearned features
generatedby aconvolutional autoencod¢2].

2 METHODOLOGY

Bathymetry and backscatter datare collected vianultibeam echosounder (MBES) in the St. Anns Bank Marine
Protected Area in Atlantic Canada in 2010 and 2011 using a Kongsberg EM710 MBES system. Benthic photographs from
surveys conducted in 2013 and 2014 were used as gtouthdsamplegor sedimentlassification[3].
Convolutional autoencodergeretrained on data patches to extract losdenensional representations of the data
MHPEHGGLQJVYT 7 KierétHerHoBriRgdted3de &z pixel in the raw data generatéearnedfeature datasets
over the whole study area
Random Forestlassifiers ] were trainedo predictseabed sedimengpesusing the ravbathymetry and backscatter
data engineered features, learned featuaesimulti-channel features learned frarambining the bathymetry and
backscatter data
As the groundruth data were highly clustered around each of the 37 sample stations, 48 out of a total of 511 samples
were extracted to be used for training to minimize effects due to spatial autocorrdlaéaassification scheme
employed by Lacharité et aB][was usedand he accuracies of each classifiegre estimated via crosmlidationto
assesthe utility of the various feature sefhe classifiers were also ustdproduceclassificationmaps over the whole
study area for comparison with the map presented by Lacharité et al. [3], produced using a combination of machine
learning methods and expert interpretation.

3 RESULTS & DISCUSSIONS

Table 6: Sample of results comparirsgabed sedimentassifier performances trained using engineéeatures from
bathymetryandbackscatter (b, c, dlgarnedfeaturedrom bathynetryandbackscattefe, f, h, i) multi-channel learned
featuregg, j), andonly raw bathymetry and backscatter déaa Classifiers prefixed by AE and AE3W are convolutional
autoencoders with different architectures.

Dataused| No. Accuracy | Std. dev | Weighted
for features| features (5-fold of avg. Ft

Classifier




a) Bathyss | Bathymetry, 64.44% | 5.75% | 0.6245
backscatter

b) Eng_x7 Bathymetry 7 43.33% 13.33% | 0.4077
° c) Eng_x13 | Bathymetry 13 54.72% 13.48% | 0.4877

{ d)Engeo |Bathymety, o5 | 569405 | 10.3206 | 0.5142
backscatter

e)AE_Bathy | Bathymetry| 32 45.56% 13.44% | 0.4457
fyAE_BS | Backscatter, 32 | 35.33% | 10.27% | 0.2985

Combined
g) AE_BathyBS bathymetry 32 56.44% 11.79% | 0.5318

Engineer
e

h) AE3W_Bathy| Bathymetry| 32 | 39.33% | 9.31% | 0.3667
i) AEBW_BS | Backscatter] 32 | 43.56% | 11.79% | 0.3863

i) Combined . .
AE3W _BathyBS bathymetry 32 68.89% 5.75% 0.6676

Learned
features

Due to the small size of the training data set and class imbalances, some classes had very few data points and thus
were always misclassified during cresaidation checksThe engineered featursetsgenerallyperformedbetter tharthe
learned featursetsfrom eitherbathymetryor backscatterHowever the multi-channelearned featursetsfrom combining
bathymetry and backscatter achieved similar or better accusadefd-scoreghan the engineered feature detassifiers
g and j inTable 1). Confusion matrices for the classifiers showed that classifiers trained on engineered features were able
to classify some classes better than classifiers trained on learned features, and vice versa.

Even after a process of manual and expert curaticanibedifficult to determine the quality of engineered feature
sets As such, the automated generatidearned featurelsy neural networksould provide a reliable and accessible way
for seabed mappingesearchers tachieve classification resué®mparable to or better than what is achievable using
manually engineered features.

4 CONCLUSIONS

Better classification performance was achigleusing features learned by convolutional autoencodéuis illustrates
the potentialutility and increased objectivity alutomatically extraatg terrain featurefor seabed mapping applications
Further work is underway tasemore feature sets of both engineered and learned featdeenine other deep learning
models for performing feature extraction, as well as to apply this feature extraction methodology with other datasets to
corroborate the results tfis study.
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1 INTRODUCTION

Suctioncaisson foundationisave asuctionaidedinstallation process which is faster and quieter, making them cheaper and
more environmentally friendlthan conventional pile foundatioridoweve, caissonsnaynot reachtheir target
penetratiordepthsdue to soil plug uplift or excessive soil heave. These soil plug hazards may cause the installatjon to fail
resulting in large remedial costs. Current monitoring techniques which measure the displacement of a single point on the
soil plug using a single beam echosouri@could be ineffective, as recent research [1] has shbatsome parts of the

soil plug are lifted more than others. This paper propasesticial intelligence (Al)driventhreedimensional (3Dpoint
scanner, which uses a Bayesian optimisai8@) algorithm to takenore informativemeasurements of the soil plug

surface, reducing the risks associated with soil plug hazards.

2 METHODOLOGY

The3D pointscannerused in the initial testspnsists ok duataxisrotating armthatholds alaser range finde Thearm is
controlled bythe BO algorithmthatdecides where to takeewmeasurements based what it has learrfrom past
measurement$pecifically,it prioritisesthe most critical areabat are closest to treensor butloes not neglect uncertain
areas with little dataA distancebased acquisition function [2 used which forces the scanner to make small directional
movements rather than large leaps, allowing for a smoother data acquisitiofivpatets ofreliminarytess were

carried otito assess thperformancef theBO algorithmfor 3D pointscanningin comparison to theonventional
algorithmthat is used in existing 3pointscannersFor these testshé scannewas mounted.45 mabovea flat circular
surfaceof 1 mdiameterto mimic the inside o& caissonFor the first set of testshe surface wakid horizontallyto

mimic soil heavingFor the second sef tests, the surface wéked tomimic soil plug uplift In both sets of testscans
were done using the@and conventional algorithnte generat&D plots of the surfaced~or these preliminary tests, the
surfaces are kept stationary in ordeagsess thperformance of the BO algorithmithout consideration of the dynamics
of a moving surface, which is the case for a soil plug surface during caisson installation.

3 RESULTS & DISCUSSIONS

In general, lte scan resudtshow thagiven the samaumber of measurementee BO algorithncan generata more
informative scan ofhe twosurfaceorientationghan the conventional algorithfRor example, Fig. 1 comparthe scan
results of the BO andonventionahlgorithms for the tilted surfac#ter collecting 24@neasurementst is evident thathe
BO algorithmcoverscritical areaghatare closest to the sensarhile not neglecting tsearch the unexplored parts of the
surface which are most uncerta®n the other handhe conventional algorithmrovides a detailegicture of a small
fraction of the surface, which may not coincide with the critical areas




Figure 1: Results of théBO (left) andConventionalright) algorithmsfor the tilted surface

4 CONCLUSIONS

This study shows that the BO algorittprovides a more informative data acquisition stratisgnthe conventional

algorithm for 3Dpoint scaning, for only a few measurementsurther work is required to test the performance of the
scanneunderwater and for mappingdgnamicmoving surface as is relevant for the suction caisson installation problem.
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1 INTRODUCTION

The seafloor is veiled from our eyes, yet observable through acoustic methods. Modern multibeam echosounders (MBES)
can form up to 1024 beams with several pings and swaths per second in shallow waters, hence are able to produce dense
and highresolution pint clouds (PCL) characterizing the seafloor and objects in the water column. However, these high
resolution data are usually rasterized for further analysis, which comes with reduced resolution and loss of information.
The recent increase in computatiopalver over the last decades enables visualizing and analyzing large point clouds with
standard PCs. This enables a new view on the seabed, especially when considering benthic life. We present new results of
our approach for hydracoustic mapping of seeass and stone habitats. Therefore, we developed a customized workflow

to derive characteristic feature from MBES PCLs (Fig. 1), which are then classified by a random forest. We achieved
surprising testraining accuracies and suggest that this techniguery well suited for mapping deeper seagrass meadows

- one of the most important marine habitats in many coastal areas around the globe.

2 METHOLOGY

The point cloud data were recorded with state of the art MBES, a NORBIT iWBMSe and a NORBIT iWBMS STX, which

a reaching a range resolution of 9 cm. After a standard postprocesing and cleaning procedure, the data were exported as a
Xyz point cloud in UTM cordinates (Fig.1) for further processing.

In the first step, neighbors are calculated for each point in the PCL. Then, 15 features are derivated fom these local
neighborhoods, including the salled eigerfeauters [1]. These features are then used as input for a random forest (RF)
classifier, whch was trained in a training area with sufficient ground truthing data. Ground truthing was done by a
combination of underwater video, scientific divers and aerial imagery.

The classified PCL was then used to compute accurate bathmetry using only seafloor echos and to compute a seagrass
canopy height model to estimate biomass.

3 RESULTS & DISCUSSIONS

We trained several RF with different ensembles of features and achieved test performances between 80 and 90 % for
seagrass [2], while the test performances for stones were less and depend on their size. The computed canopy height
models were also in a goagigreement with seagrass heights reported by scientific divers. To our knowledge, this is the
first PCL-based approch for marine habitat detection and monitoring, as previous methods a#feaiseagas shown in the
review study of [3].

We expect the performance and accuracy of our approach to increase in the future, asgtiieenation of MBES will
provide not just one solution for the bottom detection but, several, sometimes referred to-dstextions. This will

result in a derer PCL with better seafloor detection even under dense seagrass meadows.

4 CONCLUSIONS

We presented a new method for hydieustic mapping of seagrass meadows and stones, based on a combination of
MBES point clouds and machine learning. Our approach not only enables the automatic detection of these habitats but also



the separation of the recorded point cloud. The latter allows for the creation of more accurate digital terrain models of the
seafloor using only seafloor echos, as well as an estimate of seagrass biomass.
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1 INTRODUCTION

Thestudy's objectivénas been to use retiine Measure While Drilling (MWD) data to train a machine learrfivg)
model to predict the rock type ahead of the tunnel fatth MWD data collected regularly on the tunnel face, we can
utilise machine learning techniques to make atie@ prediction of the rock type before the excavation. Predicting the
rock type before excavation would give important decision support for planning muck hauling logistics, as well as in
planning of rock suppoehead of the face

Earlier studies have predicted rock type from single drillholes in quarries, surface mining and offshordHrifiiiig
but to the authds knowledgethis has not been carried out for ftdice infrastructure tunnelling for a large and diverse
dataset. These studies desatibeodels with relatively good predictive performance but have shortcomings in terms of a
limited number of different rock typemdsmall MWD datasets. In this studiWD datawerecollected from blasting
holes drilling from 16 tunnels in the southern part of Norway, spanning several rock typeBaisement rocks, Permian
volcanic rocksandCambro Surian Shaleso LimestonesThe rock typesveremapped by geologists in the tunnel
operation, inspectintheface and contour. MWdata were collecteith reattime for every 32 cm in all blasting
drillholes, typically 106150 drillholes of 36 min lengthwithin one roundAll valueswerecombined within one blasting
roundandeventuallydividedinto morerock types within the round. From the 10080000 single values for the round, the
statistical values: mean, variance, median, kurtosis, and skewness, were calculated for each of the eight M\éBsparamet
penetratiomorm, penetratiomms, rotatioapressurenorm, rotatiorpressurams, feedepressure, hammaaressure,
waterflow, giving 40 features for each blasting round sample.

2 METHODOLOGY

The dataset has 3877 samples for training and 1293 samples for testing, using a split ratio of 0.25 as recommended by
Hastie efal. [6]. Data leakage and overly optimistic Mhodels due to methodological errors have lately been identified as
key challenges to address in the research ofddplicationd7]. Extra effort has been pirito ensuring a proper scientific
ML -experiment process in this classic supervised prediction task using conventicad&gdfithms from tabular data.

Scaling and balancing data before fitting different classifiers are crucial for the result. Exploratienpgger bounds
of predictive performancesing different processing steped to setting up a pipeline of the steps: scalifigiension
reductionwith Principal Component Analysiginaryincluded, undersampling (binaryncluded, oversampling (binary
included, ML-algorithm. A range of different scalers and Mlgorithms were includedhe trainse was further splitted
into train and validationin a split ratio of 0.25All combinations were fitted with default parametexsd the train and
validation sets as input. The best performing pipelingtfethree ML-algorithmsExtra trees, Cat boosindRandom
Forestwere then hyperparameter optsenl using the Optuna systd8], using a TreestructuredParzen EstimatqiTPE)
sampler to efficiently sample from a settamge of values for each algorithm. The combined train/validation dataset was
used in a Hold cross validation setup for each fit of the model. Finally, the hyperparaoyterised besperforming
pipeline was trained on theholetrain set andestedon the vaulted testet. All choices othebest performer were based
on the balanced accuracy metric, pesiradj predictors with scores biased to classes witlygh number of sample§he
configuration values and experimentation results were organised and saved for all expesmgrite Hydra and
MLflow system. The duplicatehecked dataset was versiwacked by the DVGystem and qualitgontrolled using
Pydantic. Combined with the dependency locking system in Poetry, the research results are fully reproducible, given the
same dataset.

3 RESULTS & CONCLUSION



The three best pipelines from the pipeline process were albhéeed models, Extra trees, Cat boastjRandom Forest,

with a pipeline includingno PCAdownscaling, no scaling, randaimdesampling, followed byversampling with

SMOTE. Hyperparameter optisaition did not change the ordering, resulting in balanced classification scores on the test
set of 8.5, 84.3 and 820, respectively. For comparisptne more explainable linear model, logistic regresssonred
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1 INTRODUCTION

The DagangshahlydropowerStation is located at the midstream of Dadu River in Shimian County,
west of Sichuan Province of China. It is one of the lariggdtopowerprojects along the mainstream
of Dadu Rivemwith the maximum heightf nearly 210 mThe deformation and stability assessment of
the steep bank slope is challenging becausemflex geological conditionss shown in Fig.1dn

this study, the deformation characteristifshe right bankock slope are analyzed usitige multi

point extensometer monitorirdata. Theartificial neural networKANN), Markov chainandparticle
swarm optimization (PSQjre combined to establismawdisplacementorecastingapproach

Clearly, b overcome the shortcomingsARNN, theimprovedPSOis adopted to initialize theveights
and thresholds of th&NN. Simultaneously, the relative error sequence ofittieg valuesis

considered aa Markov chain and thprediction results are further revised Mwarkov theory. The
results show that the proposed model has the preferable approaching ability and satisfactory prediction
performance.

2 METHODOLOGY

The main characteristics of ANN in dealing with quantitative and qualitative indexes contains large
scale paralletlistributed processing, continuously nonlinear dynamics, collective computation, high
error tolerance, selfrganization, selfearning andeaktime treatmentln this study, the back
propagation (BEY ANN is used Furthermore, the PS#) as an important branch of evolutionary
algorithms, is able to avoid complex genetic operators and take advantages of cooperation and
competition. In this studyt is used to solve the problem of local convergence and guarantee the
correctness of the trained network. BesidiesMarkov chain! can describ¢hat the system elements
switch from one state to another over time. The present state fully contains the information that could
influence the future evolution of the procemsd future states wille reached through a probabilistic
process instead of a deterministic proc@é® technology roadmap of tpeoposed approadk shown

in Fig.1b.

Figurel: (a) View of the investigaté slopeand (b)the proposedalculaton process

3 RESULTS & DISCUSSIONS

3.1 Deformation analysis

To clarify the slope deformation characteristics during construction, the simulatondsictedby
FLAC3D. Figs.2a andb show that theinloading rebounadf therock masses aftexcavationappears



obviously, matcting the observeddeformingon site Fig.2c indicates thathe stress concentratisn
occuralong thefaultsandunloading fissuresexplairing the surfacecrackingof the slopeluring

Figure2: (a) Displacementontourafter excavation from Elevation 1275m to 1255m (unit: m), (b)
displacementontourafterexcavation(unit: m)and (c) stressontourafterexcavation(unit: Pa)

3.2 Displacement prediction
The deformationdatameasuredby the multi-point extensometer fluRBPwhosedistanceto the

excavation facés 39mat Elevation 1135nevery three dayfrom July 16 to October20, 2009are
analyzedClearly, the 30 deformationvaluesfrom July 16 to Octoberl1, 2009areappliedfor training
the BP network, andhe 3 valuesfrom Octoberl4 to 20, 2009are used for verificatiarFurthermore
therelative erros of the PSOBP fitting values aredivided into 4 stateasshown in Fig3a The
measurednd predictedaluesare displayed in Fig.3b, indicatinigat theforecasting effectiveness

satisfactory.
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Figure3: (a) Relative error states tfefitting values and (bfomparison othe predicted values

4 CONCLUSIONS

By integrating the advantages of the three methods, theppiraization and postevision have been
realized. Meanwhile, the proposed model can forecast the displacement rang. The calculated results
indicate that the proposed model is effective and rielitdy slope deformation prediction with
satisfactory accuracy and shows considerable potential in practical slope engineering.
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1 INTRODUCTION

In this study we applied for the first time Fully Convolutional Neural Networks (FCNNs) to a marine bathymetric
dataset to derive morphological classes over the entire Irish continental shelf

FCNNs are an emerging set of algorithms within Deep Learning that producevisretiassifications to create
semantically segmented maps. While they have been extensively utilised on imagery for ecological mapping, their
application on elevation datassll limited, especially in the marine geomorphology reale consider a set of common
derivatives to supplement a multibeam echosounder (MBES) bathymetry dataset INFOMAR: GSI/MI) over the Irish
continental shelf at 25m/pixel resolution. These derieatirom the ArcGlshased Benthic Terrain Modeller (BTM, v3.0)
toolbox [1] includea set of three bathymetric position indexes (BPIs), vector ruggedness measurement (VRM), aspect
functions and three types of hillshades. The class domains cover ten or twelve semantically distinct surface textures and
submarine landforms present on thel§hwith our definitions aiming for simplicity, prevalence, and distinctiveness. Sets
of 50 or 100 labelled samples for each class were used to train sevdeds With Resit-50 and VGG13 encoders.

Our results show a maximum model recall of 85%, with some classes reaching as high as 99%. For target classes
exhibiting high recall, models also show high precision in predictions which confirms that the underlying class boundary
has been learnDerivative choice plays an important part in the performance of the netwitktheresults showng that
FCNNs can be successfully applied to the seabed for a morphological exploration of the dataset and as a baseline for more
in-depth habitat mapping studi¢arthermore, we also investigate combining predictions from several FCNNs trained
with different subsets of derivativeNonetheless, at present state FCNNs are not suitable for tasks that require more
refined geomorphological classifications, as for the recognition of detailed morphogenetic processes.

2 METHODOLOGY

Our method considers using bathymetry and associated derivatives to modetissisatfseabecnorphological features.
We concatenate several derivatives to create psenagesand label sections of the study dibecreate a training set. The
nature of the dataset allows for sesmpervised techniques to be leveragieidure 1whereby a proportion of nelabelled
pixels is added to the optimisation process in stutEatther fashior?].

3 RESULTS & DISCUSSIONS

Our results show an overall model recall of approxima@B# with some classes reaching@® pixelaccuracy. For target
classes exhibiting high recall, models also show high precision which confirms that the underlying class boundary was
learnt. However, our objective scores cover a small extent of the total area which can mislead users. Welaséonote t
certain classes the set of derivas used for modelling contribute to crisp and accurate delineation of semantic classes
VXFK DV uGXQHIRUPVT DiQdgenerklherdtvérhé darkKdatécttReS girrect position of landforms/textures
with a comparatively precise boundary resitlioughboundaries and shapes can be ambiguous. A clear definition
(semantic model) improwdhe accuracy of the classificaticandthe optimization of derivative selectieeems tdelp the
model outputsCombining predictions from each individual network also provides the best performance, which may lead
users to investigate ensemble learning strategies.



Figure 6: Proposed method for semsiipervised learning

4 CONCLUSIONS

JURP D JHRPRUSKRORJLVWY{V SHUVSHFWLYH WKH XVH RI IXOO\ FRQYROXWLRQDO QHWZRUNV FDQ EH VXF
for rapid morphological exploratigbuttheyfail to recognize complex process&mpler classification problems and
increased labelling provide best resultsweverthere is aneed to compromiseetweerusefulness and labelling labour.
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