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1 INTRODUCTION  
To facilitate the development of increasingly large offshore windfarm sites, emerging techniques leveraging both discrete 
geotechnical and continuous geophysical data along with �1�H�X�U�D�O���1�H�W�Z�R�U�N�V�����1�1�����D�O�O�R�Z���I�R�U���W�K�H���J�H�Q�H�U�D�W�L�R�Q���R�I���D���³�V�\�Q�W�K�H�W�L�F�´��
CPT profile at any location across a large and spatially varied site [1]. As with all NN based methodologies, the quality of 
the outputs is highly dependent on the quality of the training dataset. If, for instance, all the available CPT profiles are in 
parts of the site with similar soil properties, any NN trained using this dataset will be highly unlikely to be able to 
accurately generate synthetic CPT profiles located in parts of the site with significantly different soil properties. The 
development of tools for assessment of the quality of training sets is highly desirable. This study explores a proof of 
concept of utilizing time series similarity techniques [2] �Z�L�W�K���&�3�7���³�G�H�S�W�K�´���V�H�U�L�H�V���G�D�W�D���W�R��quantify the similarity between 
CPT profiles within a dataset.  

2 METHODOLOGY  
The dynamic time warping (DTW) algorithm [3] has been used to determine similarity between pairs of CPT profiles. This 
�D�O�J�R�U�L�W�K�P���D�O�O�R�Z�V���I�R�U���&�3�7���S�U�R�I�L�O�H���³�G�H�S�W�K���V�H�U�L�H�V�´���R�I���G�L�I�I�H�U�H�Q�W���O�H�Q�J�W�K�V���Z�L�W�K���S�R�L�Q�W�V���E�H�L�Q�J���P�D�W�F�K�H�G���W�K�D�W���U�H�V�X�O�W���L�Q���W�K�H���O�R�Z�H�V�W���F�R�V�W 
(Figure 1).  

Figure 1: An illustration of 
the DTW process for 2 CPT profiles, showing (a) the input series, (b) the normalised alignment cost matrix, and (c) the 

optimal match between the series. 
 

Python code was written to calculate an alignment cost between every pair of CPT profiles on the Burbo Bank extension 
site. Alignment cost can be thought of as the inverse of similarity. 

3 RESULTS & DISCUSSIONS 
Figure 2 shows heatmaps of normalised alignment cost across the Burbo Bank extension site when compared to CPT110 
(subfigure a) and CPT 307 (subfigure b). CPT110 has a noticeably lower alignment cost with nearby CPTs in comparison 
to those further away. CPT307 is less similar with the rest of the site, particularly the northeast. 

It should be noted that this heatmap interpolates alignment cost values between CPT locations for the purpose of 
presenting this data; however, there can be no guarantees of soil behaviour between discrete CPT locations. Similar 
techniques could be applied to continuous geophysical data (either separately or in combination with CPT data) to 
eliminate this issue. 

Further work is required regarding pre-processing strategies, i.e., decisions on trimming CPT profiles to the same 
length, or realigning prominent features. 

 



 
Figure 2: A heatmap comparing the alignment cost of CPT110 (a) and CPT307 (b) to the rest of the site (CPTs in question 

in red; other CPT locations marked in black). 

4 CONCLUSIONS 
The possibility of using time series similarity techniques, such as dynamic time warping, for assessment of synthetic CPT 
training data quality has been established. Key avenues of future work have been identified. This technique, along with the 
coordinates at which the CPT profiles are located allows for the identification of areas of the site that are poorly 
represented by geotechnical information, and for additional tests to be carried out during the site investigation. 
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1 INTRODUCTION  
Modern geotechnical machinery and equipment works with a large variety of instrumentation that allows the attainment of 
a multitude of drilling parameters such as the drilling speed or the applied torque. This collection of data is usually named 
Measurement-While-Drilling (MWD).  Intuitively these data should be related to the nature and resistance of the drilled 
ground. 

However, on many occasions such relationship is not evident when a single parameter is considered (i.e., torque). 
Therefore, various authors have developed compound parameters that combine the single parameters into energy 
expressions or empirical indices seeking to assess the strength of the ground from the drilling data. 

Another approach would be to apply machine learning (ML) techniques to the MWD data in order to directly 
predict the strength of the soil. 

In this study, ML was applied to MWD data from rigid inclusions to predict the values of nearby dynamic 
penetrometers. Thus, each perforation would give the same information as a penetrometer. The results obtained were 
compared with the compound parameters to check what approach was more accurate. 
 

2 METHODOLOGY  
The process to use the MWD data was the following: 

1. Obtain the raw data of MWD and transform then to a useful format. 
2. �$�V�V�L�J�Q���S�H�Q�H�W�U�R�P�H�W�H�U�¶�V���E�O�R�Z���Y�D�O�X�H���W�R���H�D�F�K���V�D�P�S�O�H�� 
3. Pre-process data based on prior knowledge of the terrain and the machinery. 
4. Split the data into train and test sets. 
5. Train the model. 
6. Evaluate the model using the test set. 
7. Compare with compound parameters. 

 
The algorithms used were XGBoost [1] and Random Forests [2] and were applied by using scikit-learn [3]. 

XGBoost was limited to 15 trees while Random Forest was limited to 100 trees. Both algorithms were used with a 
maximum depth of 5. 

3 RESULTS 
Figure 1 shows the correlation of the specific energy, and the predicted blows with Random Forests and XGboost with the 
blow values of the penetrometer for a single jobsite. 
 



   
Figure 1: Relation between predicted values and DPSH blows: (a) Specific energy vs. DPSH blows. (b) Random 

Forests vs. DPSH blows. (c) XGBoost vs. DPSH blows. 

 As can be seen, the results from the ML algorithms showed a strong and clearly relationships with the DPSH 
blows. The correlation was stronger for ML than for the empirical formulations. 

4 CONCLUSIONS 
MWD data can be a useful source of information to verify the soil condition during drilling. Several compound parameters 
to evaluate the material strength are available in literature, but these are not directly correlated with common soil metrics 
(as are DPSH blows or cone resistance). 

ML could be used to obtain equivalent DPSH blows from MWD, making every perforation a virtual informative 
prospection. 
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1 INTRODUCTION  
Landslide is a ubiquitous natural hazard and usually has catastrophic results. To avoid landslide disasters, it is important to 
carry out timely prediction of landslide displacements. In this paper, the Xinpu landslide in China was taken as the research 
object. First, hydrological parameters and displacement data were mined to discover association rules. Then, Pearson 
correlation coefficient (PCC) was used to calculate the lag days of landslide displacement. Finally, an artificial intelligent 
model was proposed for landslide deformation prediction. 

2 METHODOLOGY  
The goal of association rule mining is to generate association rules with support and confidence greater than the minimum 
support (Smin) and minimum confidence (Cmin) set by the user respectively, and the lift (L) of the rule should be greater than 
1. Then the main influencing factors of landslide displacement can be determined based on the association rules. 

According to the principle of time series, the cumulative displacement (Dc) of landslide can be decomposed into trend 
displacement (Dt) and periodic displacement (Dp), see equation (1). The trend displacement can be fitted using 
trigonometric functions, and the periodic displacement is influenced by periodic factors such as reservoir water level and 
rainfall, and can be predicted using intelligent algorithms. 

c t pD D D�  � �                                   (1) 

BP (Back Propagation) neural network is a feedforward neural network with simple structure and can simulate any 
nonlinear mapping. The gradient search technique is used to minimize the mean square error between the actual output 
value and the expected output value. 

3 RESULTS & DISCUSSIONS 
In this paper, 8 GNSS monitoring points located in the front, middle and rear part of the landslide strong deformation zone 
and 4 hydrologic factors including monthly average water level (WLma), monthly fluctuation of water level (WLmf), monthly 
cumulative rainfall (Rm) and monthly maximum daily rainfall (Rdm) were chosen to carry out the data mining analysis. To 
establish and test the PCC-BPNN prediction model, the G07 was selected as the object. 

Tab. 1 lists the association rules of the Xinpu landslide. The results show that water level decline and heavy rainfall 
are closely related to landslide deformation. The effect of rainfall and reservoir water level on landslide displacement varies 
at different spatial locations, and the influence level of reservoir water level decreases and rainfall intensity increases from 
front part to rear part of the landslide. 

The Pearson correlation coefficient method was used to analyse the correlation between G07 displacement and 
triggering factors. The results show that the lag days of reservoir water level and rainfall are 30 days and 3 days, 
respectively. The triangular function was selected to fit the curve and the trend displacement was shown in Fig. 1(a). Fig. 
1(b) shows the extracted trend displacement and the PCC-BPNN prediction results compared with BPNN, from which we 
can see PCC-BPNN fit better. As shown in Fig. 1(c), the predicted total displacement showed great consistency with the 
measured total displacement. 

Table 1: Analysis results of association rules (Smin=5%, Cmin=60%) 

Location Rule 
ID 

Antecedent Consequent Support Confidence Lift  

front 

1 vmiddle=high; WLma=low; 
Rm=heavy 

v=high 

�� ���� ���������� 
2 vmiddle=high; WLma=middle �� ������������ ���������� 
3 vmiddle=high; WLma=middle; 

Rdm=heavy 
�� ������ ���������� 

4 vmiddle=high; vrear=middle; 
Rm=medium 

�� ������ ���������� 
5 vmiddle=high; WLmf=sharply 

drop 
�� ������ ���������� 

middle 6 WLma=low; Rm=heavy; 
Rdm=heavy 

v=high ���������� ������������ ���������� 
7 vrear=middle; Rm=heavy; 

WLma=low 
���������� ���� ���������� 



8 WLma=low; Rdm=heavy; 
WLmf= smoothly fluctuation 

���������� ������������ ���������� 

9 Vfront=high; Rdm=heavy ���������� ������������ ���������� 
rear 10 Rdm=heavy; Rm=heavy v=high ���������� ������������ ���������� 

11 vrear=middle; Rdm=heavy; 
WLma=low 

���������� ������������ ���������� 

 

Figure 1: Comparisons of (a) cumulative and trend displacement; (b) predicted 
periodic displacement; (c) predicted and measured cumulative displacement 

4 CONCLUSIONS 
In this research, a data mining method was proposed and applied to estimate the cause-effect relationship between 
hydrological parameters and landslide movements. The proposed PCC-BPNN model considering the lag effect showed a 
great ability to predict the Xinpu landslide and is thus an effective displacement prediction method for reservoir landslides. 
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1 INTRODUCTION  
This extended abstract presents two applications of Machine Learning (ML) for piezocone penetration test (CPTu) 
interpretation and site characterization. These include estimation of soil unit weight and shear wave velocity (Vs) from 
CPTu data. 

Soil unit weight and shear wave velocity are important soil parameters. A reliable estimate of the unit weight profile is 
a key first step towards the accurate evaluation of total and effective overburden stresses of a soil deposit. Accurate 
estimate of shear wave velocity is also necessary to provide the fundamental stiffness of the ground in terms of small-strain 
shear modulus (Go). 

2 METHODOLOGY  
A compiled database (n = 1228) of paired CPTu readings and laboratory measured unit weights from different field test 
sites within a variety of soil types, geological environments, and stress histories was used to explore and develop a ML 
algorithm that directly estimates soil unit weights from CPTu data [1]. The Random Forest (RF) algorithm was employed 
to train various ML models using different combinations of the basic CPTu readings including corrected tip resistance (qt), 
dynamic porewater pressure (u2), sleeve friction (fs), and depth (z). Results of the RF models were compared to some of the 
existing and widely used CPT based relationships [2, 3]. 

For the estimation of Vs from CPTu data, �&�R�Q�H�7�H�F�¶�V���J�H�R�V�S�D�W�L�D�O���G�D�W�D�E�D�V�H���R�I��seismic CPTu soundings from around the 
world was used to compile a large dataset of paired Vs-CPTu data (n > 100,000) [4]. The RF algorithm was used to train 
ML models using basic CPTu readings to estimate Vs. The impact of soil cementation was studied and a model was 
developed for uncemented soils. The results of RF models were then compared to some of the existing relationships in the 
literature [5, 6]. 

3 RESULTS & DISCUSSIONS 
Results showed that an RF model trained with qt, u2, fs, and z as input features could estimate soil unit weight with an error 
of ±0.93 kN/m3. When only qt and fs were used, RF could predict the unit weight with ±1.27 kN/m3 error. A comparison 
performed between the RF models and some of the existing relationships in literature showed that all the RF models 
developed in this study outperform the existing CPT relationships for estimating unit weight. 

Table 2: Performance of different models to estimate unit weight. 

ML models (this study) Bias±Error (kN/m3) Existing relationships Bias±Error (kN/m3) 

RF- using qt, u2, fs, and z 0.01±0.93 Robertson & Cabal (2010) 0.39±1.57 
RF- using qt and fs 0.13±1.27 Mayne (2014) 0.69±1.62 

 
For the Vs estimation from CPTu data, results showed that the all-soils model developed using the RF algorithm can 

estimate Vs with ±49.5 m/s error. The model developed for uncemented soils showed a significant improvement and could 
predict Vs with ±28.2 m/s error. All the developed RF models outperformed the studied existing relationships from 
literature. 

Table 3: Performance of different models to estimate Vs. 

 Bias±Error (m/s)  Bias±Error (m/s) 
ML models (this study) All Soils Uncemented Existing relationships All Soils Uncemented 
RF-All Soils -8.5±49.5 -23.4±34.8 Mayne (2006) 12.0±68.6 -7.2±52.5 
RF-Uncemented NA 0.6±28.2 Robertson (2009) 21.5±64.3 -6.1±50.3 

4 CONCLUSIONS 



With increasing computational power, ML has gained substantial interest within the geotechnical engineering community 
and has gradually become an alternative solution for geotechnical problems. With more accurate in-situ predictions of soil 
properties, geotechnical analysis using the CPTu can be improved. While certain projects may always require various 
amounts and types of drilling and sampling, ML-based models can enhance the accuracy and interpretation of in-situ CPTu 
profiles, offering a rapid, cost-effective, and repeatable alternative that can potentially reduce the overall schedule and cost 
of site investigations. 
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1 INTRODUCTION  
Today, input parameter estimation for geotechnical finite element modelling (FEM) is in practice often based mainly on 
expert judgement and thus introduces subjectivity into the process and hampers widespread technology adoption. This is 
particularly true for more advanced constitutive soil models which require an increasing number of input-parameters for 
calibration. Recent studies however work towards automating the process of FEM parameter calibration (e.g., Macha�þek et 
al. (2022) [1�±3]) to alleviate the above-mentioned problems and increase objectivity and comprehensibility of the method. 

The present study presents preliminary results from an exploration of automatic calibration of input parameters for 
geotechnical FEM based on machine learning (ML). ML has seen a rapid increase in geoscientific applications in the past 
years with publications in all subfields: supervised learning (e.g. [4]), unsupervised learning (e.g. [5]) or reinforcement 
learning (e.g. [6]). The rationale behind using �± supervised �± ML for this application is that ML algorithms have a strong 
capability of finding robust input-output relationships and to generalize well within the domain of the training data. 

2 METHODOLOGY  
The traditional way of parameter calibration for constitutive models in FEM is to either conduct in-situ geotechnical tests 
(e.g., cone penetration tests (CPT)) or laboratory experiments (e.g., triaxial tests) to estimate the required parameters from 
these investigations. In this study, the process of determining soil parameters from both in-situ- and laboratory tests is 
replaced with supervised ML algorithms that take raw field data and / or laboratory data as an input and based on this 
predict the parameters for different constitutive soil models. While training of ML algorithms for laboratory data is 
primarily done with synthetic data, training for in-situ data is done with field recordings. The overall workflow is shown in 
figure 1. As part of this study, we experiment with different ML algorithms, ranging from simple ones like support vector 
machines and random forest regression until deep artificial neural networks. To achieve an optimum of predictive 
performance, the hyperparameters of the ML models themselves are optimized with the hyperparameter optimization 
framework OPTUNA [7]. 

 

Figure 1: Overview of the MLpFEM workflow 

3 RESULTS AND DISCUSSIONS 
First results show that the ML algorithms are well capable to learn the relationship between the synthetic laboratory data 
and the associated soil parameters. Performance wise, the highest prediction accuracy was achieved with the artificial 
neural networks although tree-based ML methods (e.g., random forests) show almost the same performance while being 



faster and easier to train. Applying the models that were trained on synthetic data to real records of soil mechanical 
laboratory tests was also tested and shows that the models are in principle able to do this although the performance is worse 
than for the synthetic data. The reason for that is seen in the inherent noise of the real tests that require heavy data pre-
processing before the ML algorithms can be applied to them. 

4 CONCLUSIONS AND OUTLOOK  
This study can be seen as a proof of concept that ML algorithms are suited to learn the relationship between geotechnical 
field / laboratory investigations and the parameters that are necessary to calibrate more advanced constitutive soil models. 
Room for improvement is seen in improving the variability of the synthetic data so that it is better suited to cover features 
and patterns of real soil tests and also in combining laboratory data and geotechnical field data as an input to the ML 
algorithms. Nevertheless. the approach shows great potential and will be further explored in currently ongoing research 
projects. 
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1 INTRODUCTION  
There are many currently ongoing ambitions to use machine learning (ML) technology for geotechnical applications and 
ideally, inexperienced users could learn and develop their algorithms directly based on real-world data. However, the real-
world datasets come with many drawbacks such as the need to record, acquire and organize it. Additionally, geotechnical 
datasets are often limited in quantity, exhibit skewed distributions and hence might not fulfil  all requirements for certain 
geotechnical tasks. One of the main driving factors for the rapid development of ML throughout many disciplines has been 
the availability of large amounts of open data. In the field of geotechnics however, confidentiality constrains possibilities 
for publication of datasets �± limiti ng the development and use of tailored ML algorithms. 

Synthetically generated datasets, on the contrary can provide relieve in many of the situations restricting the use of real 
data. Data synthesis is primarily about generating new, unprecedented data to be used for ML model evaluation and 
training. 

To bypass the problems arising with the use of real data, we propose a generative adversarial network (GAN) [1] based 
approach of generating synthetic geotechnical data. The demands we put on the synthetic TBM data are of a dualistic 
nature as described in [2]: on the one hand, the data has to be sufficiently dissimilar to the original data, so that it does not 
create confidentiality issues (demand for originality). On the other hand, it has to show the same patterns and follow the 
same rules as the original data, so that it can be used as if it were real TBM data (demand for conformity). 

2 METHODOLOGY  

2.2 GAN MODEL  

GANs are based on a game theoretic scenario in which two neural networks compete against each other. The generator 
network (g) directly produces samples from random noise input variables and calculated parameters (i.e., weights). Its 
adversary, the discriminator (d), attempts to distinguish between samples (x) taken from the training data and samples from 
the generator. The discriminator outputs a probability value given by, indicating if x is real (i.e., from the training data) 
rather than fake (i.e., generated data). 

As the purpose of this study is not to generate a complete synthetic TBM dataset, rather than showing that it is possible 
to use GANs for the generation of new, unique, synthetic and realistic TBM data, only three features (i.e., specific energy 
[�/�, ���I �7], specific penetration [mm/kN] and torque ratio) have been chosen as the features that our GANs are trained on. 
The GAN in this work was trained using the Wasserstein distance algorithm (WGAN) [3] based on an adapted DCGAN [4] 
architecture. The parameterization was set and adjusted in an iterative process to ensure that the WGAN correctly learns 
the distribution of the training data and that the generated data are capable of reproducing the real data distribution. After 
training, the models state is saved so that it can be reused whenever the need for generating new data is given. 

2.3 EVALUATION  

The utility of the synthetic data is evaluated in a simple three-layer GRU (gated recurrent unit) regressor model with the 
task to predict the next observation. This model is first trained and tested on the real data (TRTR �± train real, test real) and 
then trained on the synthetic data and tested on the real data (TSTR �± train synthetic, test real) as introduced by [5]. 
Different metrics are calculated and compared between the results of TRTR and TSTR. 

The demand for originality was evaluated by using the distance to closest record method [6]. Here the Euclidean 
distance between any synthetic record and its closest corresponding neighbour from the real data is calculated. Most similar 
and dissimilar vectors were plotted and visually investigated. Furthermore, to check how well the synthetic data 
reassembles the real data in terms of keeping the relationship between variables and utility of the synthetic data, the 
similarity score after [7] was calculated. 

3 RESULTS & DISCUSSION 



Results of computed vector distances and the similarity score applied to a randomly chosen set of generated data and to its 
most similar and dissimilar counterpart from real data are shown in figure 1 and table 1, respectively. Where one set of 
observations contains 1024 datapoints which correlates to about 50 meters of tunnel drive. Results for the evaluation of the 
synthetic data utility in a ML model using the TRTR/TSTR method are shown in table 2. 

Table 4: Table 1. Similarity Score results, for details see [7] . 

Privacy results:   
Duplicate rows between sets (real/synthetic) (0/0)  
  
Similarity Score results:   
Basic statistics 0.9930 
Correlation column correlations 
Mean correlation between synthetic and real 

0.8422 
0.9740 

Correlation RMSE 0.8095 
Similarity Score 0.9047 

Table 5: Table 2. Error measures of the GRU regressor model. 

 MAE MSLE MAPE (%) 
TRTR 0.218 0.034 1.084 
TSTR 0.239 0.039 1.034 

4 CONCLUSIONS 
This work shows that applying a tailored WGAN trained on real observations is able to generate new, synthetic and 
realistic TBM operational data. After evaluation of the synthetic data we confirm that both imposed demands are fulfilled. 
The newly produced data shows the same patterns and follows the same rules as the original data and can be used in data 
analysis as if it were real TBM data (demand for conformity), but still presents unique samples with no connection to the 
technical content of the original data (demand for originality). 
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Figure 2: Synthetic data compared to most similar and most 
dissimilar real data, where the similarity was determined by the 
Euclidean distance between every set of synthetic and real data 

(after [2] ). 
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1 INTRODUCTION  
The settlement of railway track-bed has a direct impact on the tracks, which can lead to significant train accidents. 
Therefore, careful management is essential for preventing them. The settlement can be categorized into two types: 
immediate settlement and residual settlement. The residual settlement affects the actual operation of trains and increases 
gradually with repeated train loads. In cases where soft ground is present, the predominant factor in determining the 
engineering properties is the moisture content of the silty clay layer. To more accurately simulate the settlement behavior 
of the silty clay in the numerical analysis, the Soft Soil Creep model was employed on the original ground [1-2]. In this 
study, the authors performed numerical analysis to simulate the settlement behavior of the silty clay layer caused by 
repeatedly train loads, assuming the presence of soft ground in the original soil. Additionally, the authors used the residual 
settlement data obtained from the numerical analysis as input for machine learning algorithm to derive a residual settlement 
prediction model. 

2 NUMERICAL ANALYSIS  
Table 1 and 2 summarize the variables and properties that were considered during the numerical analysis. In addition, 
Figure 1 illustrates the mesh generation of numerical analysis. Assuming the presence of silty clay in the original ground, 
actual consolidation was expected to result in settlement convergence. The results of the residual settlement due to train 
loads after the completion of consolidation and track-bed construction are presented in Figure 2. The figure reveals that 
residual settlement occurred rapidly and significantly during the early stage of train loading, after which it gradually 
decreased and constantly converged. During the analysis phase, the authors established the initial conditions by assuming 
the presence of weak soil, specifically soft rock and silty clay, in the original ground. The analysis was then performed 
based on these assumptions. The consolidation process of the lower and upper track-beds was complete by performing 
consolidation over a period of 180 days, while confirming whether settlement due to consolidation was converging. After 
confirming that the settlement had converged, a reinforced track-bed, HSB, TCL, and Rail were applied. The analysis only 
considered the settlement that occurred after the completion of rail installation. To accomplish this, the consolidation 
analysis, reinforced track-bed design, and track installation processes were all performed in accordance with proper 
procedures. 
 

         
Figure 3 Mesh generation of numerical analysis Figure 4 Residual settlement from numerical analysis 

 

 



Table 1 Summary of cases for numerical analysis 

Cause of settlement Input parameters 
Trackbed height 6m 

Thickness 10m / 15m / 20m 
Soft ground liquid limit  20% / 40% / 50% 

Groundwater level GL(-0m) / GL(-5, -7.5, -10m) / GL(-10, -15, -20m) 
Consolidation time 18 Month 

 
Table 2 Constitutive model and material properties for numerical analysis [3]  

 

3 PREDICTION MODEL OF RESIDUAL SETTLEMENT  
To deduce the predictive model of settlement, the authors used the results from the numerical analysis as input data for 
machine learning algorithms such as Linear Regression, Lasso, Ridge, Multi Layered Perceptron, Support Vector Machine, 
Random Forest, XGBoost and LightGBM. And the performance of the model is estimated by root means square (RMSE), 
the results were presented in Table 2. As per the table, Random Forest, XGBoost and LightGBM algorithms yielded the 
best performance. Furthermore, the importance of variables derived from the three algorithms is summarized in Figure 3.  
 
Table 3 RMSE value of each algorithm 

Algorithms LR L1 L2 MLP SVM RF XGB LGBM 

RMSE 2.32 2.32 2.32 1.19 1.53 0. 79 1.09 0.53 
 

4 VERIFICATION OF PREDICTION MODEL  
In this chapter, the authors present a validation of the prediction model derived through LightGBM, which demonstrated 
superior performance. During the verification process, the authors compared track-bed numerical results obtained through 
numerical analysis with values derived from the prediction model, by applying data points that fall outside the range of the 
input data features. The verification results are depicted in Figure 4, where the x-axis represents the residual settlement 
derived from the predictive model, and the y-axis represents the residual settlement derived from the numerical analysis. 
The RMSE obtained in this process was 1.23. Although slightly higher than the RMSE obtained through traditional 
validation, it is not significant enough to be considered indicative of overfitting.  
 

5 RESULT AND DISCUSSIONS 
This In this study, residual settlement caused by railway loads was derived through numerical analysis, and the residual 
settlement of the railway track-bed was predicted using machine learning. Various algorithms were tested, and the 
algorithm with the highest performance for predicting the residual settlement of the railway track-bed was selected. The 
tree-based algorithms outperformed the other algorithms, with LightGBM providing the most accurate prediction model. 
�$�Q�D�O�\�V�L�V���R�I���W�K�H���I�H�D�W�X�U�H�¶�V���L�P�S�R�Utance in the prediction model revealed that embankment height, groundwater level, liquid 
limit, and the thickness of the silty clay had a significant influence on the prediction model. However, consolidation time 
and train load did not significantly influence the prediction model. 
 

Name Model 
Poisson`s 

ratio 
E 

(kPa) 
c 

(kPa) 
�Ë 

( o ) CC CS Ca 
�� 

(kN/m3) 
Rail LE 0.2 210e6 - - - - - 70 

TCL LE 0.2 34e6 - - - - - 24.5 

HSB LE 0.2 12.9e6 - - - - - 23 

Reinforced 
trackbed 

MC 0.2 120e3 0 40 - - - 20 

Upper 
trackbed 

MC 0.2 80e3 0 35 - - - 20 

Lower 
trackbed 

MC 0.2 60e3 0 35 - - - 21.56 

Ground 
(Soft rock) 

MC 0.22 9.1e3 11,300 53 - - - 26 

Ground 
(Silty Clay) 

SSC 0.2 - 
59.8~ 
111.8 

33.4~ 
38.7 

0.09~ 
0.36 

0.018~ 
0.072 

0.00524~ 
0.01415 15 



   
Figure 5 Feature importance of the best three algorithms Figure 6 Verification of prediction model 

 

ACKOWLEDGEMENTS  
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government 
(MSIT) (NRF-20212021R1A2C2013162 and NRF-2021R1I1A3056148). 

REFERENCES 
[1] D.S. Kim, S.C. Yang, J.S. Moon, H.J. Lee, D.W, Kang (2006) Settlement of embankment and foundation for concrete 

track of G�\�X�Q�J�E�X���K�L�J�K���V�S�H�H�G���U�D�L�O�U�R�D�G�����Þ�������-�R�X�U�Q�D�O���R�I���7�K�H���.�R�U�H�D�Q���6�R�F�L�H�W�\���I�R�U���5�D�L�O�Z�D�\�����������������S�S����������-651. 

[2] PLAXIS(2022) PLAXIS Version CONNECT Edition V22 Manual, The Soft Soil Creep Model(Time Dependent 
Behavior) 

[3] D. W. Oh, G. H. Kim, H. H. Yoon, H. S. Jung.(2023).Discussion on Settlement Characteristics of Railway Track-bed 
Considering Soft Ground using Numerical Analysis. Journal of the Korean Society for Railway,26(2),102-118. 

  

Importance score (%)

0 10 20 30 40 50

F
ea

tu
re

H

CT

GWT

THK_silt

LL_silt

Loading_No

Point
Random Forest 
XGBoosts 
LightGBM 

Settlement from numerical analysis (mm)

-30 -20 -10 0

P
re

di
ct

iv
e 

se
ttl

em
en

t (
m

m
)

-30

-20

-10

0



19 

DETECTION OF INCORRECT LABELS IN DATA FOR INTERPRETATION OF THE 
GEOLOGICAL CONDITIONS AHEAD OF THE TUNNEL FACE 
Sapronova A1, Unterlass P1, Dickmann T2, Hecht-Méndez J2, Marcher T1 
1Graz University Of Technology, Institute of Rock Mechanics and Tunnelling, 2Amberg Technologies 
AG 

DETECTION OF INCORRECT LABELS IN DATA FOR INTERPRETATION 
OF THE GEOLOGICAL CONDITIONS AHEAD OF THE TUNNEL FACE  

Alla Sapronova*1, Paul J. Unterlass1, Thomas Dickmann2, Jozsef Hecht-Méndez2, and Thomas Marcher1 
1Institute of Rock Mechanics and Tunnelling, Graz University of Technology, Graz, Austria 
2Amberg Technologies AG, Regensdorf-Watt, Switzerland 
*presenting author (email: alla.sapronova@tugraz.at) 

Keywords: Data science, data quality, pre-processing, machine learning 

1 INTRODUCTION  
Risk management during the construction of an underground structure (e.g., tunnels) requires in-advance knowledge of the 
rock mass that will be excavated [1]. In order to predict the geological conditions accurately, the correlation between 
various in-situ data and classes of the rock mass ahead of the tunnel face has to be found. With a large amount of data that 
can be obtained from working equipment and technical surveys, this search is often outsourced to machine learning-based 
models. The quality of the input data is ensured by state-of-the-art collection methods, while the output data �± the labels of 
the rock mass class collected a posteriori - �L�V���V�X�E�M�H�F�W���W�R���D�Q���H�[�S�H�U�W�¶�V���S�H�U�F�H�S�W�L�R�Q���D�Q�G�����W�K�H�U�H�I�R�U�H�����F�D�Q���F�R�Q�W�D�L�Q���H�U�U�R�U�V�����6�X�F�K���Q�R�Q-
sampling errors are a major bottleneck in developing reliable predictive models for geoengineering.  

In this work, we demonstrate an approach for detecting and eliminating the subjective perception in geological 
�F�R�Q�G�L�W�L�R�Q�V�¶���O�D�E�H�O�L�Q�J���W�K�D�W���L�V���I�X�U�W�K�H�U���X�V�H�G���W�R���L�P�S�U�R�Y�H���D�Q���D�F�F�X�U�D�F�\���R�I���W�K�H���P�R�G�H�O���I�R�U���S�U�H�G�L�F�W�L�Q�J���W�K�H���U�R�F�N���P�D�V�V���F�O�D�V�V���D�K�H�D�G���R�I���W�K�H 
tunnel face. 

The proposed approach is site-independent and can be generally applied for the detection of incorrect labels in data, 
including the labels of rarely observed classes. 

2 METHODOLOGY  
To spot the observations with misplaced labels, we used a cascade of unsupervised and supervised machine learning 
algorithms. By recursively clustering the observational data, we forced a model to learn the underlying patterns in seismic 
data and available geological documentation of the underground construction site. Then we back-trace the observational data 
from the same clusters and map them with experts�¶ assigned labels to identify the outliers. 

The methodological reasoning behind the proposed approach is as follows: in a feature-space the observations (each 
denoted by a label, e.g. a rock mass class) are located unevenly, some closer to each other. When the distance between 
labels is too small, a machine learning model might fail to differentiate well between the small data variance for the 
corresponding observation and will not make accurate predictions for the label(s). On the other side, forcing a model to 
predict labels located too close might lead to an overfitting problem. In order to avoid these problems, unsupervised 
machine learning methods can be employed to assign close observations to one cluster. In such clusters, the distances 
between observations (and corresponding labels) will be distributed more evenly when compared to the original dataset. 
The nested clusters can be constructed recursively until the distances between various observations in a single cluster are 
distributed almost evenly. Then, a supervised machine learning method can be used to find a correlation between labels and 
observations for every cluster, and the outliers can be identified. 

3 RESULTS &  DISCUSSIONS 
With unsupervised machine learning methods, the entire dataset was clustered into an arbitrarily defined number of 
clusters. The experiments show that three to seven clusters were enough to resolve the distance between the closely located 
observations. The�Q�����V�X�S�H�U�Y�L�V�H�G���P�D�F�K�L�Q�H���O�H�D�U�Q�L�Q�J���P�H�W�K�R�G�V���Z�H�U�H���X�V�H�G���W�R���S�U�H�G�L�F�W���W�K�H���O�D�E�H�O�V���I�R�U���W�K�H���R�E�V�H�U�Y�D�W�L�R�Q�V�����W�K�H���F�O�X�V�W�H�U�V�¶��
�L�Q�I�R�U�P�D�W�L�R�Q���I�U�R�P���W�K�H���S�U�H�Y�L�R�X�V���V�W�H�S���Z�D�V���D�G�G�H�G���D�V���D�Q���D�G�G�L�W�L�R�Q�D�O���L�Q�S�X�W�����:�K�H�Q���W�K�H���S�U�H�G�L�F�W�L�Y�H���P�R�G�H�O�¶�V���D�F�F�X�U�D�F�\���R�Q���W�K�H���W�H�V�W���G�D�W�D��
exceeded 90%, wrongly predicted rock mass classes were flagged as (possibly) mis-labeled and observations related to 
these labels were backtraced and further explored. 

The approach was validated on data from different sites and results confirm that the proposed method is site-
independent and can be generally applied. The performance of the supervised predictive model was assessed using 
different evaluation techniques, including confusion matrix based (e.g., F1Score), Log Loss, and Receiver Operating 
Characteristics (ROC) curve. 

4 CONCLUSIONS 



A cascade of unsupervised and supervised machine learning algorithms is used to eliminate subjective perceptions in data 
labeling and to improve the accuracy of predicting the geological condition ahead of the tunnel face. The latter is achieved 
by improving the quality of a training dataset. When spotted, the potentially mislabeled observations can be either removed 
from the training data or re-labeled (manually or automatically). Such an approach also generates additional information 
���L���H�������F�O�X�V�W�H�U�¶�V���O�D�E�Hl) that can be used as extra input and help to improve the rock mass prediction by implicitly resolving the 
problem of finding a difference between closely located observations. 

Another advantage of this approach is the ability to analyze a large amount of data and provide an accurate, objective 
interpretation in (near)real-time. 
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1 INTRODUCTION  
During tunnel excavation, the rock mass ahead of the tunnel is often drilled for exploratory or intervention purposes, such 
as grout injections or dewatering. Most drilling equipment records operational parameters via a data acquisition system, 
monitoring while drilling (MWD), presenting the opportunity relate the drilling performance to the rock mass 
characteristics. This has been used to interpret the rock mass ahead of the tunnel face for decision making regarding 
excavation, support and grouting [e.g. 1, 2, 3, 4]. The large quantity of time-series and spatial data lends itself well to 
interpretation via machine learning methods. 

One of the key challenges to applying machine learning to these datasets is that MWD and grouting data are not 
collected specifically for machine learning, and in order to derive meaningful interpretations information from a variety of 
data sources must be manually related to each other in terms of time and/or space. 

2 DATA TYPES AND PRE-PROCESSING METHODOLOGY  
The MWD data themselves consist of time series of machine parameters, for example rate of penetration (ROP), feed, 
damper and rotation pressure (Fig. 1, top), organised into separate data files for each drilled hole. These first need to be 
filtered to remove non-rock mass associated noise to highlight changes in the parameters in response to rock mass changes 
(Fig. 1, bottom). A second key step is locating the boreholes in time and space. This required developing scripts that related 
time stamp and hole collar survey data to develop a chronological model of when each hole is drilled with respect to the 
other holes (Fig. 2). Finally, the MWD data are manually related to grouting data by assigning the MWD data file to a 
grouting data file. 

3 DISCUSSION AND CONCLUSIONS 
In order to reduce the amount of manual pre-processing needed to apply machine learning techniques to MWD and 
injection data, the time and location of the boreholes must be included in the metadata. A data structure for MWD and 
injection data should be constructed before the project start to ensure that borehole numbers are systematically assigned 
regardless of equipment so they can be automatically related to each other. 

 

Figure 2:  Example time series of MWD data showing (left) raw signal with operation-related noise and (right) 
filtered signal showing rock mass-related events. 
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Figure 3:  Screenshots of video-based chronological models of borehole locations 
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1 INTRODUCTION  
The crosshole ground penetrating radar (GPR) is an electromagnetic wave-based method to detect electrical properties of 
subsurface materials, which has been successfully employed in extensive engineering applications. However, the 
interpretation of crosshole GPR is a complicated and challenging task due to the highly nonlinear mapping relationship 
between crosshole GPR data and subsurface electrical properties [1]. 

In this paper, we propose a generative adversarial network (GAN) [2] based 3D crosshole GPR inversion network, 
referring as CGPR2Vox, to reconstruct subsurface structure defects from crosshole GPR images. We first introduce the 
design of the CGPR2Vox, then illustrate the data preparation and network training. Finally, a novel visible model 
experiment is designed to collect measurement data for verifying the generalization ability of CGPR2Vox. 

2 METHODOLOGY  
Figure 1 shows the architecture of the CGPR2Vox framework, which includes a generator to inverse the input crosshole 
GPR data into permittivity voxels, and a discriminator to improve the performance of generator by discriminating fake 
samples. 

 

Figure 4: Structure of the CGPR2Vox network 

3 DATASET 
We use finite-difference time-domain (FDTD) method to create 1100 synthetic 3D diagram wall models, and then obtain 
the corresponding crosshole GPR data and voxel models by simulating electromagnetic wave propagation and voxelization, 
respectively. Finally, the training and testing datasets are formed by combining crosshole GPR and voxel data from the 
same electrical models into data pairs. 

4 RESULTS 
We use training dataset to train the proposed CGPR2Vox for 500 epochs. And then the testing on test dataset shows that 
the proposed framework achieves 92.05% precision, 96.43% recall and 94.19% F1-score, respectively. In the meanwhile, 
we build an automatic and visible experiment system and gather 36 B-scan time-domain waveform images. Then we feed 
the experimental data to CGPR2Vox which is trained by the FDTD dataset. The CGPR2Vox reveals the 3D spatial position 
relationship between sub-box and defect with position error of 1.05cm. 

5 CONCLUSIONS 



CGPR2Vox is a 3D GAN-based inversion framework that can automatically reconstruct subsurface structure from 
crosshole GPR data. It achieves high accuracy and robustness on both synthetic and real-world datasets, and can effectively 
reconstruct subsurface defects. 
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1 INTRODUCTION  
Like the comparison of the round time in Formula 1 car racing, metrics show which machine learning algorithm best fits 
the data prediction requirements. The question is, are all metrics suitable for every algorithm and data set in geotechnics? 
One problem for data sets in geotechnics is that there are often only sparse and imbalanced. Another problem is the 
subjectivity of choosing the input parameters for machine learning algorithms and metrics. Most of them have no clear 
decision rule and depend on the experience of the supervisor. This research gives a first recommendation of the stability of 
different metrics for regression and classification predictors for a wide variety of geotechnical data sets.  
 

2 METHODOLOGY  
Training and performance measurements of different algorithms on various data sets are used to show the stability of the 
metrics to eliminate the problem of subjectivity of parametrization. For this reason, a large number of different data sets are 
needed. Geotechnical data for machine learning are raw and often sparse, so to eliminate subjectivity the solution was to 
split every data set randomly into training and prediction subsets and repeat this procedure 300 times per data set. In this 
way the normalized standard deviation can be calculated, and the stability of the metric can be estimated. Nine published 
data sets for regression and seven for classification tasks are used. For calculating the normalized standard deviation, the 
resulting distribution of the 300 times training cycle of every algorithm and metric is fitted by the probability distribution, 
which is included in the SciPy package in Python. The p-value of the Kolmogorov-Smirnov test was the criterion for 
deciding, which probability distribution showing the best fit  to the resulting distribution. To make the metrics comparable, 
one probability distribution is used for every algorithm over all applied metrics. The stability of a metric is rated by 
Kolmogorov-Smirnov p-value > 0.05 and normalized standard deviation < 0.5. 

3 RESULTS & DISCUSSIONS 
Most regression metrics show a stable behaviour. The maximum error (mer) is over all algorithms unstable. The mer-
results show for 5-8 cases a p-value < 0.05. For classification, the Ada Boost Classifier and the Multi-Layer Perceptron 
Classifier show medium to low stability for all metrics. The rest of the metrics of the classifiers show stable behaviour. 
Error! Reference source not found. summarizes the recommendations for the classifier based on the p-value and the 
normalized standard deviation. The recommendations for the regressors are not shown in this abstract.  
 
Table 4: Recommendation for classification algorithms (vertical) and metrics (horizontal).    
+ (useable for all data sets), ~ (depends on data set), - (not useable for all data sets). 

 Accuracy 
f1-

score 
fb-

score 
Hamming-

loss 
Jaccard-
index 

Log-
loss Precision 

Recall-
score 

Zero-
one-
loss 

Random Forest + + + ~ + + + + ~ 

K-Nearest Neighbour + + + + + + + + + 
Support Vector 

Machine + + + + + + + + + 



 

4 CONCLUSIONS 
The used methodology shows, in a limited way, how stable different metrics are, addicted to the algorithm. A 
recommendation for a small set of algorithms and metrics is possible. To validate these results, more data sets are needed. 
The best case would be, that the 300 times repeated training and performance measurement cycle can be substituted by a 
sufficiently large number of different data sets. Python provides more machine learning algorithms and metrics which have 
not been examined. If enough computational power is available, this recommendation can be done for all implemented 
algorithms and metrics in Python/Scikit-learn package. 
All results and used data: https://github.com/rmttugraz/MatthiasHann.git  
  

Decision Tree + + + + + + + + + 
Gaussian Nearest 

Neighbour + + + + + + + + + 
Linear Discriminant 

Analysis + + + + + + + + + 

AdaBoost - + ~ ~ ~ - - - ~ 
Quadratic 

Discriminant + + + + + + + + + 
Multi-Layer-
Perceptron - ~ ~ - ~ ~ - ~ ~ 

Linear Regression + + + + + + + + ~ 
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1 INTRODUCTION  
Urban development urges the use of tunnelling which can induce surface settlements. If not accurately estimated, ground 
movements can cause damage to the existing structures. Recently, Soft Computing techniques based on Machine Learning 
(ML) methods have been used to predict these settlements [1,2]. However, these innovative methods are only as good as 
the data they learn from. In the scope of the Grand Paris Express, which is the largest underground transport project in 
Europe, we have access to a big amount of settlement data as well as excavation and soil parameters. This paper discusses 
the results of the prediction of settlement at any distance from the tunnel axis using some ML algorithms, namely ensemble 
methods like XGBoost and Random Forest Regressor. The choice of these methods is based on recent studies [3�±6] that 
prove that these algorithms are capable of better performance than the widely used Artificial Neural Networks (ANN).  

2 METHODOLOGY  
Our goal is to predict the surface settlement induced by tunnelling at any distance from the tunnel axis. Thereby, the 
�V�H�W�W�O�H�P�H�Q�W���L�V���W�K�H���³�R�X�W�S�X�W�´���S�D�U�D�P�H�W�H�U�� �7�K�H���³�L�Q�S�X�W�´���G�D�W�D���D�U�H���W�K�H���S�D�U�D�P�H�W�H�U�V���W�K�D�W���K�D�Y�H���D�Q���L�P�S�D�F�W���R�Q���W�K�H��settlement. They can 
be classified into 3 parts: tunnel geometry, shield operation and geological conditions [7]. 

The first step is the extraction and the cleansing of data. The collected data corresponds to the excavation of 13 km of 
metro tunnels using an Earth Pressure Balance (EPB) Tunnel Boring Machine (TBM) for the project of the Grand Paris 
Express (GPE). A relational database was then created to gather all the information in one place while keeping the data safe 
[8]. 

After the data treatment, the input parameters are selected: cover depth and distance to tunnel axis for the tunnel 
geometry, advance rate, torque of the cutting wheel, front pressure, thrust, and pressure and volume of grout filling for the 
shield operation, and finally soil density, pressuremeter modulus and soil rheological coefficient alpha, earth pressure 
coefficient, soil cohesion, soil friction angle for geological conditions. Note that soil layers�¶���S�D�U�D�P�H�W�H�U�V (i.e. thickness, 
location with respect to the tunnel and mechanical properties) are combined using the method described by Chen et al. [1]. 

The dataset of 4406 values is then divided into training (70%) and testing (30%) datasets. Training phase includes 
hyperparameters tuning using Random Search (ScikitLearn library, Python) combined to cross-validation with 5 folds. 
�2�Q�F�H���W�K�H���P�R�G�H�O�¶�V���K�\�S�H�U�S�D�U�D�P�H�W�H�U�V���D�U�H���R�S�W�L�P�L�V�H�G�����W�K�H���P�R�G�H�O�¶�V���S�H�U�I�R�U�P�D�Q�F�H���L�V���W�H�V�W�H�G��with the testing dataset. The model is 
evaluated using 2 error metrics, namely �4�/�5�'  (Root Mean Square Error) and �4�6 (coefficient of determination). If the 
�4�/�5�'  is close to 0 and the �4�6 close to 1, the model is considered as performant.  

3 RESULTS & DISCUSSIONS 
Based on the results (Figure 1), both models have similar performance. The RMSE is of 0.83 and 0.84 and the �4�6 is equal 
to 0.83 and 0.82 for XGBoost and RF for the testing dataset. Unfortunately, some settlements are underpredicted which is 
of higher risk than overprediction for settlement. An error metric that penalizes the model in case of underprediction should 
be considered [3]. 
 



 
Figure 7 : �(�Y�D�O�X�D�W�L�R�Q���R�I���P�R�G�H�O�¶�V���S�H�U�I�R�U�P�D�Q�F�H 

4 CONCLUSIONS 
In this paper, two ensemble methods are tested for the prediction of surface settlement at any distance from the tunnel axis, 
namely Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms. Based on �4�/�5�'  and �4�6 error metrics, 
both methods showed great results. Error metric that penalizes underprediction should be added to �L�P�S�U�R�Y�H���W�K�H���P�R�G�H�O�V�¶��
predictions. In this study, the interpolation performance of ensemble methods was tested. To conclude on their capacity of 
extrapolation, the models will  be tested on new data from different excavation zones. 
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1 INTRODUCTION  
Geotechnical constitutive models are often a mix of well-known physics and empirical relations that can be improved 
gradually for specific cases or with increased insight and feedback data. The Bayesian framework is very powerful to 
calibrate the empirical relations by updating our belief, given past and current experience. One successful approach is 
Markov Chain Monte Carlo (MCMC) sampling to update model parameters to fit data to models, [1]. This method is 
extensively used in geotechnical applications, [2, 3]. 

MCMC is used to update the probability distribution of the model parameters given new information. Thanks to the 
Bayesian framework, measurement uncertainty (output variables) and model uncertainty can be considered explicitly. 
Often the variance on the input can be ignored, for instance time measurements are considered accurate without a need to 
consider variance while CPT measurements as input might have considerable (spatial) variance. In that case, the calibration 
approach needs to account for these uncertainties. A simple strategy to account for the uncertainties correctly within a 
Bayesian framework is proposed in this paper. 

2 METHODOLOGY  
The likelihood of data �U�Ü given an input �T�Ü and model �B with parameters �à is given as: 

 

�L�:�U�Ü���T�Ü�á�à�; 
L 
l�s 
§�t�è�O�ì�Ü
�6
W 
p�A�T�L�F
F

�>�U�Ü
F �B�:�T�Ü�á�à�;�?�6

�t�O�ì�Ü
�6 �G�� 

(1) 

 
With the variance �O�ì�Ü

�6 
L �ê�ì�Ü
�6 
E�F�6 which accounts for the variance of the data, �ê�ì�Ü

�6 and the residual variance �F�6 which 
represents unexplained prediction uncertainty originating from the model. If the measured input �T�Ü has a significant 
variance, we want to account for that by using a likelihood function considering the true coordinate �T
Ü�Ü: �L�:�<�T�Ü�á�U�Ü�=���<�T
Ü�Ü�á�à�=�;.  

For a multiple linear regression model, this likelihood is worked out in [1, 4]. This becomes significantly more difficult 
if the input variance is geospatially correlated and the model is highly non-linear and coupled, as is often the case in soil 
mechanics. For instance, the input could be soil properties generated from a random field, conditioned by a nearby CPT, to 
predict the pile resistance over depth, [3].  

A more generic approach is proposed to handle the variance �ê�Ù�:�ë�á�� �;
�6  originating from the uncertainty on the input. Input 

�T is assumed to be normally distributed around the real values �T
Ü and standard deviation �ê�ë. Using the model �B�:�T�á�à�;, the 
variance �ê�Ù�:�ë�á�� �;

�6  can be calculated from a sampled distribution of �T, which is then used in the likelihood (eq. 1). If the 
relation between �T and �U��is linear, the problem can be solved without iterations. Given a highly non-linear relation however 
this needs to be calculated with every sample of the likelihood function. An iterative approach is needed as the variance of 
predictions due to the uncertainty of input will depend on the model parameters �à. Variance of the input might have a 
negligible effect on the final prediction of one model, and a very large effect for another set of parameters. The resulting 
variance �ê�Ù�:�ë�á�� �;

�6  is then added: �O�ì�Ü
�6 
L �ê�ì�Ü

�6 
E�F�6 
E�ê�Ù�:�ë�á�� �;
�6 . The total variance �O�ì�Ü

�6  is used in MCMC sampling using eq. 1.  
  

3 RESULTS & DISCUSSIONS 
The proposed approach is generic and can be used with any model �B�:�T�á�à�;, where �T can be a vector of inputs. To illustrate 
the solution and the importance of handling input uncertainty, a simple quadratic model is used with 11 data points of 
varying variance �ê�ë

�6. The result is shown in Figure 1. A large variation in the uncertainty of �T is foreseen. This could 
represent an uncertainty on the measured cone resistance (�T) used to predict an undrained shear strength (�U), for instance 
due to a larger distance between the two measurements.  



In Figure 1, a fit is shown that considers only uncertainty in the dependent variable �U (Fig. 1(a)) and uncertainty on 
both dimensions (Fig. 1(b)). If the uncertainty of the input is not considered, the model fit becomes less predictable and 
gives too much importance to less reliable measurements. This also results in a larger posterior predictive distribution and 
more uncertainty on the real correlation. By considering all uncertainties, a more reliable fit can be achieve with a narrow 
posterior predictive distribution.  

 
FIGURE 5:  Bayesian parameter updating without and with consideration of �ê�ë  



4 CONCLUSIONS 
Uncertainties of the model input can play a significant role in the calibration of soil mechanical models. The uncertainties 
can be considered well within a probabilistic framework, but often focus on the uncertainty of the dependent variables. In 
case of complex, non-linear predictions, the uncertainty in the input also might have a large impact on the final fit of the 
model. An approach is proposed to calibrate a model probabilistically using MCMC with consideration of a (variable) 
variance of the input, �ê�ë. 

This approach is especially relevant when linking field measurements (for instance cone penetration tests) to 
predictions of the soil response, such as drivability of piles.  
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1 INTRODUCTION  
Recent developments in deep learning and computer vision have contributed to substantial advances in many disciplines. In 
the geosciences, there is great interest in transferring the successes of deep learning achieved in computer vision to remote 
sensing applications, but applications to seabed mapping are nascent in comparison to terrestrial remote sensing. 

Machine learning methods have been popularly employed in seabed mapping studies [1]. However, traditional machine 
learning workflows involve a manual and subjective process of engineering and selecting appropriate representations of the 
raw data ���µ�H�Q�J�L�Q�H�H�U�H�G���I�H�D�W�X�U�H�V�¶�� to be used as predictors in the chosen machine learning model(s). An advantage of deep 
learning methods is the automation and objectivity of the feature engineering process [2], where the neural networks 
extract useful properties of the data via a combination of assigning weights to variables, non-linear activations, and a 
process of gradient descent optimization of the weights. In addition, this capability of learning features opens the 
possibility for deep neural networks to glean information that may be present in the data but has not yet been derived 
manually.  

This study presents a comparison of the performance of classifiers trained using conventional engineered features to 
that of classifiers trained using features automatically learned by a deep neural network ���µ�O�H�D�U�Q�H�G���I�H�D�W�X�U�H�V�¶��. We calculated 
several of the most common terrain attributes found in the literature and used these to predict the distribution of seabed 
sediment properties observed from discrete point samples. Results were compared with models trained on learned features 
generated by a convolutional autoencoder [2]. 

2 METHODOLOGY  
Bathymetry and backscatter data were collected via multibeam echosounder (MBES) in the St. Anns Bank Marine 
Protected Area in Atlantic Canada in 2010 and 2011 using a Kongsberg EM710 MBES system. Benthic photographs from 
surveys conducted in 2013 and 2014 were used as ground-truth samples for sediment classification [3].  

Convolutional autoencoders were trained on data patches to extract lower-dimensional representations of the data 
���µ�H�P�E�H�G�G�L�Q�J�V�¶�������7�K�H�V�H���H�P�E�H�G�G�L�Q�J�V��were then computed for each pixel in the raw data to generate learned feature datasets 
over the whole study area.  

Random Forest classifiers [4] were trained to predict seabed sediment types using the raw bathymetry and backscatter 
data, engineered features, learned features, and multi-channel features learned from combining the bathymetry and 
backscatter data.  

As the ground-truth data were highly clustered around each of the 37 sample stations, 48 out of a total of 511 samples 
were extracted to be used for training to minimize effects due to spatial autocorrelation. The classification scheme 
employed by Lacharité et al. [3] was used, and the accuracies of each classifier were estimated via cross-validation to 
assess the utility of the various feature sets. The classifiers were also used to produce classification maps over the whole 
study area for comparison with the map presented by Lacharité et al. [3], produced using a combination of machine 
learning methods and expert interpretation. 

3 RESULTS & DISCUSSIONS 

Table 6:  Sample of results comparing seabed sediment classifier performances trained using engineered features from 
bathymetry and backscatter (b, c, d), learned features from bathymetry and backscatter (e, f, h, i), multi-channel learned 
features (g, j), and only raw bathymetry and backscatter data (a). Classifiers prefixed by AE and AE3W are convolutional 
autoencoders with different architectures. 

 Classifier Data used 
for features 

No. 
features 

Accuracy 
(5-fold 
cross 

validation) 

Std. dev 
of 

accuracies 

Weighted 
avg. F1-

score 



 a) BathyBS Bathymetry, 
backscatter 

2 64.44% 5.75% 0.6245 

E
ng

in
ee

r
ed

 
fe

at
ur

es
 b) Eng_x7 Bathymetry 7 43.33% 13.33% 0.4077 

c) Eng_x13 Bathymetry 13 54.72% 13.48% 0.4877 

d) Eng_x20 Bathymetry, 
backscatter 

20 56.94% 10.32% 0.5142 

Le
ar

ne
d 

 
fe

at
ur

es
 

e) AE_Bathy Bathymetry 32 45.56% 13.44% 0.4457 
f) AE_BS Backscatter 32 35.33% 10.27% 0.2985 

g) AE_BathyBS 
Combined 
bathymetry 

& 
backscatter 

32 56.44% 11.79% 0.5318 

h) AE3W_Bathy Bathymetry 32 39.33% 9.31% 0.3667 

i) AE3W_BS Backscatter 32 43.56% 11.79% 0.3863 

j) 
AE3W_BathyBS 

Combined 
bathymetry 

& 
backscatter 

32 68.89% 5.75% 0.6676 

 
Due to the small size of the training data set and class imbalances, some classes had very few data points and thus 

were always misclassified during cross-validation checks. The engineered feature sets generally performed better than the 
learned feature sets from either bathymetry or backscatter. However, the multi-channel learned feature sets from combining 
bathymetry and backscatter achieved similar or better accuracies and f1-scores than the engineered feature sets (classifiers 
g and j in Table 1). Confusion matrices for the classifiers showed that classifiers trained on engineered features were able 
to classify some classes better than classifiers trained on learned features, and vice versa. 

Even after a process of manual and expert curation, it can be difficult to determine the quality of engineered feature 
sets. As such, the automated generation of learned features by neural networks could provide a reliable and accessible way 
for seabed mapping researchers to achieve classification results comparable to or better than what is achievable using 
manually engineered features. 

4 CONCLUSIONS 
Better classification performance was achievable using features learned by convolutional autoencoders. This illustrates 

the potential utility and increased objectivity of automatically extracting terrain features for seabed mapping applications. 
Further work is underway to use more feature sets of both engineered and learned features, examine other deep learning 
models for performing feature extraction, as well as to apply this feature extraction methodology with other datasets to 
corroborate the results of this study. 
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1 INTRODUCTION  
Suction caisson foundations have a suction-aided installation process which is faster and quieter, making them cheaper and 
more environmentally friendly than conventional pile foundations. However, caissons may not reach their target 
penetration depths due to soil plug uplift or excessive soil heave. These soil plug hazards may cause the installation to fail, 
resulting in large remedial costs. Current monitoring techniques which measure the displacement of a single point on the 
soil plug using a single beam echosounder [3] could be ineffective, as recent research [1] has shown that some parts of the 
soil plug are lifted more than others. This paper proposes an artificial intelligence (AI)-driven three-dimensional (3D) point 
scanner, which uses a Bayesian optimisation (BO) algorithm to take more informative measurements of the soil plug 
surface, reducing the risks associated with soil plug hazards. 

2 METHODOLOGY  
The 3D point scanner, used in the initial tests, consists of a dual-axis rotating arm that holds a laser range finder. The arm is 
controlled by the BO algorithm that decides where to take new measurements based on what it has learnt from past 
measurements. Specifically, it prioritises the most critical areas that are closest to the sensor but does not neglect uncertain 
areas with little data. A distance-based acquisition function [2] is used, which forces the scanner to make small directional 
movements rather than large leaps, allowing for a smoother data acquisition path. Two sets of preliminary tests were 
carried out to assess the performance of the BO algorithm for 3D point scanning, in comparison to the conventional 
algorithm that is used in existing 3D point scanners. For these tests, the scanner was mounted 0.45 m above a flat circular 
surface of 1 m diameter, to mimic the inside of a caisson. For the first set of tests, the surface was laid horizontally to 
mimic soil heaving. For the second set of tests, the surface was til ted to mimic soil plug uplift. In both sets of tests, scans 
were done using the BO and conventional algorithms to generate 3D plots of the surfaces. For these preliminary tests, the 
surfaces are kept stationary in order to assess the performance of the BO algorithm without consideration of the dynamics 
of a moving surface, which is the case for a soil plug surface during caisson installation. 

3 RESULTS & DISCUSSIONS 
In general, the scan results show that given the same number of measurements, the BO algorithm can generate a more 
informative scan of the two surface orientations than the conventional algorithm. For example, Fig. 1 compares the scan 
results of the BO and conventional algorithms for the tilted surface after collecting 240 measurements. It is evident that the 
BO algorithm covers critical areas that are closest to the sensor, while not neglecting to search the unexplored parts of the 
surface which are most uncertain. On the other hand, the conventional algorithm provides a detailed picture of a small 
fraction of the surface, which may not coincide with the critical areas. 

   



Figure 1 : Results of the BO (left) and Conventional (right) algorithms for the tilted surface 

4 CONCLUSIONS 
This study shows that the BO algorithm provides a more informative data acquisition strategy than the conventional 
algorithm for 3D point scanning, for only a few measurements. Further work is required to test the performance of the 
scanner underwater and for mapping a dynamic moving surface as is relevant for the suction caisson installation problem. 
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1 INTRODUCTION  
The seafloor is veiled from our eyes, yet observable through acoustic methods. Modern multibeam echosounders (MBES) 
can form up to 1024 beams with several pings and swaths per second in shallow waters, hence are able to produce dense 
and high-resolution point clouds (PCL) characterizing the seafloor and objects in the water column. However, these high-
resolution data are usually rasterized for further analysis, which comes with reduced resolution and loss of information. 
The recent increase in computational power over the last decades enables visualizing and analyzing large point clouds with 
standard PCs. This enables a new view on the seabed, especially when considering benthic life. We present new results of  
our approach for hydro-acoustic mapping of seagrass and stone habitats. Therefore, we developed a customized workflow 
to derive characteristic feature from MBES PCLs (Fig. 1), which are then classified by a random forest. We achieved 
surprising test-training accuracies and suggest that this technique is very well suited for mapping deeper seagrass meadows 
- one of the most important marine habitats in many coastal areas around the globe.  

2 METHOLOGY  
The point cloud data were recorded with state of the art MBES, a NORBIT iWBMSe and a NORBIT iWBMS STX, which 
a reaching a range resolution of 9 cm. After a standard postprocesing and cleaning procedure, the data were exported as a 
xyz point cloud in UTM coordinates (Fig.1) for further processing.  
In the first step, neighbors are calculated for each point in the PCL. Then, 15 features are derivated fom these local 
neighborhoods, including the so-called eigen-feauters [1]. These features are then used as input for a random forest (RF) 
classifier, which was trained in a training area with sufficient ground truthing data. Ground truthing was done by a 
combination of underwater video, scientific divers and aerial imagery.  
The classified PCL was then used to compute accurate bathmetry using only seafloor echos and to compute a seagrass 
canopy height model to estimate biomass. 

3 RESULTS & DISCUSSIONS 
We trained several RF with different ensembles of features and achieved test performances between 80 and 90 % for 
seagrass [2], while the test performances for stones were less and depend on their size. The computed canopy height 
models were also in a good aggreement with seagrass heights reported by scientific divers. To our knowledge, this is the 
first PCL-based approch for marine habitat detection and monitoring, as previous methods are image-based as shown in the 
review study of [3]. 
We expect the performance and accuracy of our approach to increase in the future, as the next-generation of MBES will 
provide not just one solution for the bottom detection but, several, sometimes referred to as multi-detections. This will 
result in a denser PCL with better seafloor detection even under dense seagrass meadows.  

4 CONCLUSIONS 
We presented a new method for hydro-acoustic mapping of seagrass meadows and stones, based on a combination of 
MBES point clouds and machine learning. Our approach not only enables the automatic detection of these habitats but also 

Figure 1: Example of an MBES point cloud with seagrass and stone 
habitats.  



the separation of the recorded point cloud. The latter allows for the creation of more accurate digital terrain models of the 
seafloor using only seafloor echos, as well as an estimate of seagrass biomass.  
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1 INTRODUCTION  
The study's objective has been to use real-time Measure While Drilling (MWD) data to train a machine learning (ML)  
model to predict the rock type ahead of the tunnel face. With MWD data collected regularly on the tunnel face, we can 
utili se machine learning techniques to make a real-time prediction of the rock type before the excavation. Predicting the 
rock type before excavation would give important decision support for planning muck hauling logistics, as well as in 
planning of rock support ahead of the face.  

Earlier studies have predicted rock type from single drillholes in quarries, surface mining and offshore drilling [1]�±[5], 
but to the author's knowledge, this has not been carried out for full-face infrastructure tunnelling for a large and diverse 
dataset. These studies described models with relatively good predictive performance but have shortcomings in terms of a 
limited number of different rock types and small MWD datasets. In this study, MWD data were collected from blasting 
holes drilling from 16 tunnels in the southern part of Norway, spanning several rock types from Basement rocks, Permian 
volcanic rocks, and Cambro Silurian Shales to Limestones. The rock types were mapped by geologists in the tunnel 
operation, inspecting the face and contour. MWD data were collected in real-time for every 1-2 cm in all blasting 
drillholes, typically 100-150 drillholes of 3-6 m in length within one round. All values were combined within one blasting 
round and eventually divided into more rock types within the round. From the 10000-50000 single values for the round, the 
statistical values: mean, variance, median, kurtosis, and skewness, were calculated for each of the eight MWD parameters: 
penetration-norm, penetration-rms, rotation-pressure-norm, rotation-pressure-rms, feeder-pressure, hammer-pressure, 
waterflow, giving 40 features for each blasting round sample.  

2 METHODOLOGY  
 The dataset has 3877 samples for training and 1293 samples for testing, using a split ratio of 0.25 as recommended by 
Hastie et al. [6]. Data leakage and overly optimistic ML-models due to methodological errors have lately been identified as 
key challenges to address in the research of ML-applications [7]. Extra effort has been put into ensuring a proper scientific 
ML-experiment process in this classic supervised prediction task using conventional ML-algorithms from tabular data. 

Scaling and balancing data before fitting different classifiers are crucial for the result. Exploration of the upper bounds 
of predictive performance using different processing steps led to setting up a pipeline of the steps: scaling, dimension 
reduction with Principal Component Analysis (binary included), undersampling (binary included), oversampling (binary 
included), ML-algorithm. A range of different scalers and ML-algorithms were included. The train set was further splitted 
into train and validation, in a split ratio of 0.25. All combinations were fitted with default parameters, and the train and 
validation sets as input. The best performing pipeline for the three ML-algorithms Extra trees, Cat boost, and Random 
Forest were then hyperparameter optimised using the Optuna system [8], using a Tree-structured Parzen Estimator (TPE) 
sampler to efficiently sample from a setup-range of values for each algorithm. The combined train/validation dataset was 
used in a 5-fold cross validation setup for each fit of the model. Finally, the hyperparameter-optimised best-performing 
pipeline was trained on the whole train set and tested on the vaulted test set. All choices of the best performer were based 
on the balanced accuracy metric, penalising predictors with scores biased to classes with a high number of samples. The 
configuration values and experimentation results were organised and saved for all experiments using the Hydra and 
MLflow system. The duplicate-checked dataset was version-tracked by the DVC system and quality-controlled using 
Pydantic. Combined with the dependency locking system in Poetry, the research results are fully reproducible, given the 
same dataset. 

 

3 RESULTS & CONCLUSION 



The three best pipelines from the pipeline process were all tree-based models, Extra trees, Cat boost, and Random Forest, 
with a pipeline including: no PCA-downscaling, no scaling, random undersampling, followed by oversampling with 
SMOTE. Hyperparameter optimisation did not change the ordering, resulting in balanced classification scores on the test 
set of 84.5, 84.3 and 82.0, respectively. For comparison, the more explainable linear model, logistic regression, scored 
76.2, and the increasingly complex neural network 
scored 80.1. The confusion matrix in Figure 1 
visualises the differences in predictive performance 
for different classes. Distinct rock types such as 
Rhomb porphyry and Hornfels are predicted with high 
scores. Notably, three quite similar Gneisses are, to a 
high degree, distinguishable. Results are promising 
concerning predicting rock type from MWD-data in 
advance of the face, making it possible to make 
logistical decisions that maximise high-level 
reuse of tunnel rockmass in construction processes.  
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1 INTRODUCTION  

The Dagangshan Hydropower Station is located at the midstream of Dadu River in Shimian County, 
west of Sichuan Province of China. It is one of the largest hydropower projects along the mainstream 
of Dadu River with the maximum height of nearly 210 m. The deformation and stability assessment of 
the steep bank slope is challenging because of complex geological conditions, as shown in Fig.1a. In 
this study, the deformation characteristics of the right bank rock slope are analyzed using the multi-
point extensometer monitoring data. The artificial neural network (ANN), Markov chain and particle 
swarm optimization (PSO) are combined to establish a new displacement forecasting approach. 
Clearly, to overcome the shortcomings of ANN, the improved PSO is adopted to initialize the weights 
and thresholds of the ANN. Simultaneously, the relative error sequence of the fitting values is 
considered as a Markov chain and the prediction results are further revised by Markov theory. The 
results show that the proposed model has the preferable approaching ability and satisfactory prediction 
performance. 

2 METHODOLOGY  

The main characteristics of ANN in dealing with quantitative and qualitative indexes contains large-
scale parallel-distributed processing, continuously nonlinear dynamics, collective computation, high 
error tolerance, self-organization, self-learning and real-time treatment. In this study, the back 
propagation (BP)[1] ANN is used. Furthermore, the PSO[2], as an important branch of evolutionary 
algorithms, is able to avoid complex genetic operators and take advantages of cooperation and 
competition. In this study, it is used to solve the problem of local convergence and guarantee the 
correctness of the trained network. Besides, the Markov chains[3] can describe that the system elements 
switch from one state to another over time. The present state fully contains the information that could 
influence the future evolution of the process, and future states will be reached through a probabilistic 
process instead of a deterministic process. The technology roadmap of the proposed approach is shown 
in Fig.1b. 

 
Figure 1: (a) View of the investigated slope and (b) the proposed calculation process 

3 RESULTS & DISCUSSIONS 
3.1 Deformation analysis 
To clarify the slope deformation characteristics during construction, the simulation is conducted by 
FLAC3D. Figs.2a and b show that the unloading rebound of the rock masses after excavation appears 

(a) (b) 



obviously, matching the observed deforming on site. Fig.2c indicates that the stress concentrations 
occur along the faults and unloading fissures, explaining the surface cracking of the slope during 
excavation. 

 
Figure 2: (a) Displacement contour after excavation from Elevation 1275m to 1255m (unit: m), (b) 
displacement contour after excavation (unit: m) and (c) stress contour after excavation (unit: Pa) 

3.2 Displacement prediction  
The deformation data measured by the multi-point extensometer M414RBP whose distance to the 
excavation face is 39m at Elevation 1135m every three days from July 16 to October 20, 2009 are 
analyzed. Clearly, the 30 deformation values from July 16 to October 11, 2009 are applied for training 
the BP network, and the 3 values from October 14 to 20, 2009 are used for verification. Furthermore, 
the relative errors of the PSO-BP fitting values are divided into 4 states as shown in Fig.3a. The 
measured and predicted values are displayed in Fig.3b, indicating that the forecasting effectiveness is 
satisfactory. 

 
  Figure 3: (a) Relative error states of the fitting values and (b) comparison of the predicted values 

4 CONCLUSIONS 

By integrating the advantages of the three methods, the pre-optimization and post-revision have been 
realized. Meanwhile, the proposed model can forecast the displacement rang. The calculated results 
indicate that the proposed model is effective and reliable for slope deformation prediction with 
satisfactory accuracy and shows considerable potential in practical slope engineering. 
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1 INTRODUCTION  
In this study we applied for the first time Fully Convolutional Neural Networks (FCNNs) to a marine bathymetric 

dataset to derive morphological classes over the entire Irish continental shelf. 
FCNNs are an emerging set of algorithms within Deep Learning that produce pixel-wise classifications to create 

semantically segmented maps. While they have been extensively utilised on imagery for ecological mapping, their 
application on elevation data is still limited, especially in the marine geomorphology realm. We consider a set of common 
derivatives to supplement a multibeam echosounder (MBES) bathymetry dataset (INFOMAR: GSI/MI) over the Irish 
continental shelf at 25m/pixel resolution. These derivatives from the ArcGIS-based Benthic Terrain Modeller (BTM, v3.0) 
toolbox [1] include a set of three bathymetric position indexes (BPIs), vector ruggedness measurement (VRM), aspect 
functions and three types of hillshades. The class domains cover ten or twelve semantically distinct surface textures and 
submarine landforms present on the shelf, with our definitions aiming for simplicity, prevalence, and distinctiveness. Sets 
of 50 or 100 labelled samples for each class were used to train several U-Nets with ResNet-50 and VGG-13 encoders.  

Our results show a maximum model recall of 85%, with some classes reaching as high as 99%. For target classes 
exhibiting high recall, models also show high precision in predictions which confirms that the underlying class boundary 
has been learnt. Derivative choice plays an important part in the performance of the networks with the results showing that 
FCNNs can be successfully applied to the seabed for a morphological exploration of the dataset and as a baseline for more 
in-depth habitat mapping studies. Furthermore, we also investigate combining predictions from several FCNNs trained 
with different subsets of derivatives. Nonetheless, at present state FCNNs are not suitable for tasks that require more 
refined geomorphological classifications, as for the recognition of detailed morphogenetic processes. 

2 METHODOLOGY  
Our method considers using bathymetry and associated derivatives to model sets of distinct seabed morphological features. 
We concatenate several derivatives to create pseudo-images and label sections of the study site to create a training set. The 
nature of the dataset allows for semi-supervised techniques to be leveraged (Figure 1 whereby a proportion of non-labelled 
pixels is added to the optimisation process in student-teacher fashion [2]. 

3 RESULTS & DISCUSSIONS 
Our results show an overall model recall of approximately 85% with some classes reaching 99% pixel accuracy. For target 
classes exhibiting high recall, models also show high precision which confirms that the underlying class boundary was 
learnt. However, our objective scores cover a small extent of the total area which can mislead users. We also note that for 
certain classes the set of derivatives used for modelling contribute to crisp and accurate delineation of semantic classes 
�V�X�F�K���D�V���µ�G�X�Q�H�I�R�U�P�V�¶���D�Q�G���µ�E�H�G�U�R�F�N���R�X�W�F�U�R�S�¶. In general, the networks can detect the correct position of landforms/textures 
with a comparatively precise boundary result although boundaries and shapes can be ambiguous. A clear definition 
(semantic model) improves the accuracy of the classification, and the optimization of derivative selection seems to help the 
model outputs. Combining predictions from each individual network also provides the best performance, which may lead 
users to investigate ensemble learning strategies. 

 



 

Figure 6:  Proposed method for semi-supervised learning 

 

4 CONCLUSIONS 
�)�U�R�P���D���J�H�R�P�R�U�S�K�R�O�R�J�L�V�W�¶�V���S�H�U�V�S�H�F�W�L�Y�H�����W�K�H���X�V�H���R�I���I�X�O�O�\���F�R�Q�Y�R�O�X�W�L�R�Q�D�O���Q�H�W�Z�R�U�N�V���F�D�Q���E�H���V�X�F�F�H�V�V�I�X�O�O�\���D�S�S�O�L�H�G���W�R���D���O�D�Q�G�V�F�D�S�H��
for rapid morphological exploration, but they fail to recognize complex processes. Simpler classification problems and 
increased labelling provide best results, however there is a need to compromise between usefulness and labelling labour. 
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